

DART GPC6

DRAFT, Issued for DART Review Dallas, Texas February 28, 2020

This Report was Prepared for DART Review and Comment General Planning Consultant Six Managed by HDR

Document Revision Record

DART D2 Draft Ventilation Report

HDR Report Number: Click here to enter text.

Project Manager: Andy Stone

PIC: Click here to enter text.

Revision Number: 0	Date: February 28, 2020
Version 1	Date: Click here to enter text.
Version 2	Date: Click here to enter text.

Originator		
Name: Triet Tran Sean Cassady Suraj Parayil Yunlong Liu	Firm: HNTB Corporation	
Title: Draft Ventilation Report	Date: 02.21.2020	

	Commentors	
Name: Click here to enter text. Firm: Click here to enter text. Date: Click here to enter text.	Name: Click here to enter text. Firm: Click here to enter text. Date: Click here to enter text.	Name: Click here to enter text. Firm: Click here to enter text. Date: Click here to enter text.
Name: Click here to enter text. Firm: Click here to enter text. Date: Click here to enter text.	Name: Click here to enter text. Firm: Click here to enter text. Date: Click here to enter text.	Name: Click here to enter text. Firm: Click here to enter text. Date: Click here to enter text.

DART

Task Manager: Sanja Zlatanic	Date: Click here to enter text.
Verified/Approved By: Click here to enter text.	Date: Click here to enter text.

DART D2 Preliminary Ventilation Report

Distribution		
Name: Click here to enter text.	Title: Click here to enter text.	Firm: Click here to enter text.
Name: Click here to enter text.	Title: Click here to enter text.	Firm: Click here to enter text.

Contents

1	Introd	luction	. 5
	1.1	General	. 5
	1.2	Project Description	. 5
	1.3	Applicable Codes, Standards and Requirements	. 6
2	Static	n Ventilation Concept	. 8
	2.1	Design Objective	. 8
	2.2	Design Principle	. 8
	2.3	Smoke control and ventilation strategy	. 8
		2.3.1 Fire Scenario (a) Train fire OTE and OPE on:	. 8
		 2.3.2 Fire Scenario (b) Track fire:	.9 10
	2.4	Ventilation airflow diagram	10
	2.5	Ventilation Plant Schematic	13
3	Metho	odology and Analysis	14
	3.1	Design Methodology	14
4	3.2	Inputs and Assumptions	15
		3.2.1 Design Fire Scenario	16
	<u> </u>	3.2.2 SES Inputs	17
		3.2.3 CFD input	18
4	Resu	Its and Discussion	21
	4.1	SES Results	21
	4.2	CFD	27
		4.2.1 Case No.3	28

Tables

Table 1 Fire Life Safety Concept Design Principles Code Matrix	. 6
Table 2: Fire Scenarios	. 8
Table 3: SES K Factors	18

Table 4: Ventilation flow parameters used in CFD (kcfm) scenario a, b and c	. 19
Table 5: SES Simulations	. 22
Table 6: CFD Results	. 27

Figures

-igure 1. Layout indicating approximate extents of DART D2 Subway alignment	
Figure 2: Fire Scenario (a)	9
Figure 3: Fire Scenario (b)	9
Figure 4: Fire Scenario (c)	10
Figure 5: Fire Scenario Option 1	11
Figure 6: Fire Scenario Option 2	12
Figure 7: Commerce Station Ventilation Schematic	13
Figure 8: Mode Matrix Diagram	14
Figure 9: Fire Growth Rate	17
Figure 10: CFD Model	19
Figure 11: CFD Train	20
Figure 12: Geometry Simplification	21
Figure 13: SES Case No. 3 Diagram	23
Figure 15: SES Case No. 5 Diagram	24

Appendices

Acronyms and Abbreviaations

АНЈ	Authority Having Jurisdiction
DART	Dallas Area Rapid Transit
DCM	Design Criteria Manual
DFT	Dry Film Thickness
FCC	Fire Command Center
FDC	Fire Department Connection
FPM	Feet Per Minute (velocity)
FT	Feet (Length)
GPM	Gallons Per Minute (Flow)
In w.g.	Inches of Water Guage (pressure)
LRV	Light Rail Vehicle
NFPA	National Fire Protection Association
SLRV	Super Light Rail Vehicle
SF	Square Feet (Area)
TXDOT	Texas State Department of Transportation

1 Introduction

1.1 General

The preliminary ventilation report provides presents the evaluation of emergency ventilation within the underground portion of the DART D2 Subway extension. The Authority Having Jurisdiction is the Texas State Department of Transportation (TxDOT). This report will address the fire life safety systems in place for the underground trainway and station portion of the DART D2 Subway project for.

1.2 Project Description

The DART D2 Subway Project is comprised of a subway system that would begin southeast of Victory Station and end west of Bylor University Medical Center Station. The subway extension will include one at-grade station (Museum Way), and three underground Rail stations (Metro Center, Commerce Street, and CBD East).

Figure 1. Layout indicating approximate extents of DART D2 Subway alignment

Ventilation systems will need to be considered for the underground segment of the DART D2 Subway system to help with exhaust during normal train operations, as well as during a fire emergency to prevent smoke spread.

1.3 Applicable Codes, Standards and Requirements

The following standards are applicable for the Fire Life Safety Analysis for the DART D2 Subway:

- 1. International Building Code (IBC) as amended by the City of Dallas
- 2. International Fire Code (IFC) as amended by the City of Dallas
- 3. NFPA 130 2014 edition Standard for Fixed Guideway Transit and Passenger Rail Systems
- 4. DART, Emergency Operating Procedure, Publication Number: 101.01, 04/01/2004

5. DART, Fire Smoke (Tunnel) Operating Procedure, Publication Number: 101.07, 04/01/2004 In addition to the standards listed above the DART Design Criteria Manual (DCM) 2003 edition by ACT 21 is used to evaluate any applicable design features, but note that the DCM is project specific and does not directly apply to the current DART D2 Project

Design Feature	Code/Standard Basis	Discussion
Fire Rated Construction	2014 NFPA 130; 5.2.4.1	Interconnection between floor levels is allowed with special provisions.
Fire Rated Construction	2014 NFPA 130; 5.2.4.3	Fire Rated separation between ancillary occupancies as required by NFPA 101
Fire Rated Construction	2014 NFPA 130; 5.2.4.2	All Public areas shall be fire separated from adjacent non-public areas
Corridor Width	2015 IBC; 1020.2 2014 NFPA 130; 5.3.4.2	Minimum corridor width 44 in. Additionally applies to platforms from NFPA 130
Stairway width	2015 IBC; 1011.2	Minimum stairway width 44 in.
Number of exits	2015 IBC; 1006.2.1.1	Three exits or exit access doorways shall be provided from any space with occupant load of 501 to 1000
Definition of Point of Safety	2014 NFPA 130; 3.3.35	Special provisions allow point of safety at the following: trainway, station, at grade point beyond vehicle
Evacuation	2014 NFPA 130; 5.3.1.1 2014 NFPA 130; 5.3.1.2	Platform Evacuation Time – Evacuate platform in 4 minutes or less Evacuation Time to a Point of Safety in 6 minutes or less
Exits	2014 NFPA 130; 6.3.1.4	Maximum distance between exits shall not exceed 2500 ft

Table 1 Fire Life Safety Concept Design Principles Code Matrix

Cross Passage	2014 NFPA 130; 6.3.1.6	Cross-passageways shall not be farther than 800 ft
Exit Signs	2014 NFPA 130; 6.3.5.5	Enclosed trainways greater than 1 train length shall be provided with directional signs as appropriate for emergency procedures
Mechanical	2014 NFPA 130: 7.1.2.2	Mechanical Ventilation required at:
Ventilation	2014 NFPA 130: 7.2.3	1. Enclosed Stations
	,	2. Trainway greater than 1000 ft
		Design should incorporate:
		1. Fire Heat release rate
		2. Fire Growth rate
		3. Station and trainway geometries
		4. Elevation, temperature
		differences wind etc.
Fan ramp up time	2014 NFPA 130; 7.3.1.1	Fan motors designed to achieve full
		operating speed in no more than 30
		seconds from stopped position, and
		no more than 60 seconds for
		variable-speed motors.
Standpipe	2014 NFPA 130; 5.4.5	Class I standpipes shall be installed
	2014 NFPA 130; 5.4.5.2	in enclosed stations in accordance
		with NFPA 14
		Standpipes are required to be
		enclosed in fire rated construction
		1. System is cross-connected or fed
		I form two locations.
		2. Isolation valves are installed not more than 800 ft apart
Hydrante	2003 DART DCM Vol 1 by ACT 21:	Hydrants within 150 feet of Fire
Trydiants	2003 DART DOM VOLT BY ACT 21,	Department Connection to a
	20.0.1	Standnine system
		Within 150 feet of each subway
		station entrance or access point.
Hydrants	2015 IFC; 507.5.1.1	Standpipe system shall have a fire
		hydrant within 100 feet of the fire
		department connections.
Ventilation	2003 DART DCM Vol 1 by ACT 21;	Maintain a single Evacuation path
Requirements	25.3.2	from the train that is clear of smoke
		and hot gases.
Ventilation	2003 DART DCM Vol 1 by ACT 21;	Tunnel Ventilation Fan Dampers:
Requirements	25.4.5	Max velocity 1800 FPM
		Tunnel Ventilation Fan Sound
		Attenuators: Max velocity 1800 FPM
		Isolation Dampers: Max velocity
1		

	Concrete Ducts/Plenums/Shafts:
	Tunnel Ventilation Shaft: Nominal velocity of 1800 FPM, Max velocity of 2200 FPM Other concrete ducts/plenums/shafts: Nominal velocity of 1500 fpm, Max velocity of 1800 FPM

2 Station Ventilation Concept

2.1 Design Objective

The objective of the ventilation and fire safety design is to mitigate hazards to provide adequate level of safety for tunnel or station area occupants during periods of revenue and maintenance operations. Ventilation system configuration and sequence of operations are established to provide tenable environment to facilitate self-evacuation from tunnel and station areas.

2.2 Design Principle

Stations of the subject project has been proposed with platform screen doors (PSD), which separate the platform and the trackway into two zones. Therefore trackway fires and platform fires are managed separately. Moreover, it can also achieve energy savings for climate control, as the station cooling air will not be lost into the tunnel as it is separated from the platform of the station.

2.3 Smoke control and ventilation strategy

ID	Fire Location	Fire HRR	Smoke control strategy
(a)	Train fire	14.9 MW (Medium growth rate)	Over Track Exhaust (OTE) Over Platform Exhaust (OPE)
(b)	Trackway Fire	1.5 MW (UF)	OTE
(c)	Platform Fire	3.5 MW (UF)	OPE

Table 2: Fire Scenarios

2.3.1 Fire Scenario (a) Train fire OTE and OPE on:

During a train fire the over track exhaust (OTE) dampers will open to exhaust the smoke from the incident track. The platform screen doors are open to allow passengers to exit the train. Since the

doors are open there is a concern that smoke will develop in the platform as well. So platform exhaust dampers are opened as well to help with the exhaust of smoke.

Figure 2: Fire Scenario (a)

2.3.2 Fire Scenario (b) Track fire:

Trackway fire is non-rolling Stock fires occurring in the trackway within the Station length. For such an incident – where a train is not located within the incident station trackway – the PSDs on the incident track will remain closed and the incident track OTE will be operated in smoke control mode, exhausting 60m3/s, as shown in Figure 3.

Figure 3: Fire Scenario (b)

2.3.3 Fire Scenario (c) Platform fire:

For a station fire originating within a platform zone, the objective will be to limit smoke to the incident zone. On activation, the Station Smoke Management System (SSMS) will utilize the OTE fans to exhaust through the duct above the platform to provide over platform exhaust as shown in Figure 4.

Figure 4: Fire Scenario (c)

2.4 Ventilation airflow diagram

Ventilation airflow diagrams for two options are presented for fire scenarios (a) (b) (c) in Figure 5 and Figure 6.

TVS Fan OTE Fan 130 m³/s 120 m³/s 10 m³/s

(a)

DART D2 Preliminary Ventilation Report

2.5 Ventilation Plant Schematic

The preliminary ventilation plant layout includes a set of 3 fans per fan plant, each with a capacity of 250kcfm. It is assumed that a maximum capacity of 500 kcfm will be required at each fan plant location. This results in a maximum of 2 fans on at a time with and an additional fan on standby for redundancy. Figure 7 demonstrates the ventilation configuration for Commerce Station.

Figure 7: Commerce Station Ventilation Schematic

The ventilation fans have been preliminarily sized for 250 kcfm at 3.6 in w.g. this corresponds to a 400 hp fan. See Appendix A for preliminary fan pressure calculation. Calculations were based on preliminary assumptions for duct and plenum sizes in order to provide adequate ventilation.

Fires can occur at multiple locations along the Dart D2 Extension. Providing adequate ventilation for different fire scenarios can prove to be challenging because of the different components that need to be configured, such as damper opening positions, which fans to turn on, and whether the fans are in supply or exhaust mode. For this reason, a preliminary mode matrix is created to establish the different configurations that will be implemented within different fire zones along the length of the alignment. Figure 8 shows a preliminary layout of the different equipment involved for emergency ventilation.

Figure 8: Mode Matrix Diagram

3 Methodology and Analysis

3.1 Design Methodology

Tunnel ventilation design for the project will be configured to manage environmental conditions within the enclosed underground trainways and public circulation areas for normal, congested and emergency fire scenario conditions. Conceptual space proofing requirements will be established by emergency fire scenarios for tunnel and station fires. A segment wide ventilation flow network model created with the SES (Subway Environmental Simulation) tool is created for the underground portion of the Dart D2

extension. A series of SES simulations are developed to test the different fire scenarios and establish flow rates. A 3D model of the station is created and set up to run scenarios aligned with SES cases, using results from SES as boundary conditions. The methodology applied for this analysis is broken into the following steps:

- 1. Gather data: Gather geometrical data, walkway tunnels/stairs, platforms, and ventilation shafts.
- 2. Evaluation & Simplification of Geometry: Evaluate detail of features such as signages, beams, and other projections in space to determine if they introduce significant impacts on ventilation flow conditions generated by a fire in the station.
- 3. **Establish domain:** Determine fire and airflow region for proper model domain. Use ancillary calculations as needed to validate an adequate model size prior to solid modeling.
- 4. **Solidify model:** Create a three-dimensional computer solid model of station features determined to be of significance to ventilation flow field.
- 5. **Meshing:** Evaluate the solid model for decomposition and meshing schemes. Generate the Mesh model.
- 6. **Solve:** Read mesh into Fluent software solver and prepare inputs for iterative solution scheme including boundary conditions, model equations, solver schemes, and other customized time-dependent inputs. A detailed discussion of model inputs for fire source term is included in Section 3.2.1, of this report.
- 7. **Simulation:** Initiate iterative solution based on assumed time step interval for managing stable transient solution.
- 8. **Monitor:** Checkpoint simulation with the following activities: monitor residual values generated by momentum, continuity and energy equations of the simulation, evaluate wall function metrics generated for dataset at intermediate time steps, evaluate flow velocity conditions verses cell dimensions to confirm flow transit criterion is maintained, review simulation inputs for any incorrect boundary condition settings. Reconfigure simulation and restart if any issues are discovered.
- 9. Verify: Verify simulation is complete.
- 10. **Post process:** Post process simulation to show smoke visibility conditions or other parameters that are of interest
- 11. .Analyze: Analyze results for compliance with intended scope and pertinent code requirements
- 12. **Repeat:** Repeat steps 3 through 11 as needed for subsequent simulations, such as varying fire location(s), ventilation modes, or other environmental characteristics to accurately represent project conditions and goals

Key features and project dimensions of the overall facility for this analysis were developed from the architectural drawings. Simplifications for details not relevant to the solution were made and applied to the CFD model to help reduce computational time. The engineering team analyzed the fire scenarios then applied them to the 3D constructed model along with ambient characteristics. Results gathered from the CFD analysis allowed the engineering team to verify if the proposed ventilation meets the project criterion for safe egress.

3.2 Inputs and Assumptions

Makeup airflow from emergency ventilation operations comes from headhouses above, this assumes that public accessways will remain open during an emergency event. This can be achieved by either having magnetic hold open doors or doorless open entryways.

1. Platform is enclosed with platform screen doors. It is assumed that smoke and airflow from trackways will only travel to the platform through open platform screen doors that will align with open train doors.

- 2. Elevators and emergency egress stairways where doors typically remain closed are assumed to have no contributions to airflow and are therefore modeled as a solid obstruction
- 3. The objective for emergency ventilation is to provide a pressure differential between the incident location and the non-incident location. A higher pressure at a non-incident location is desirable so that the direction of airflow is from the non-incident location towards the incident location. Indicating a resistance of smoke ingress to the non-incident location.
- 4. Initial indications for successful emergency ventilation operation includes maintaining critical velocity. This is the air velocity in the incident bore required to prevent the back layering of smoke. Critical velocity applies to push pull ventilation scenarios where on one side of the fire is in exhaust and one side is in supply providing longitudinal airflow. An initial pass/fail criterion for a push-pull ventilation scenario is a velocity greater than 459 FPM within a tunnel segment, and 481 FPM for a station track with platform screen doors. See 4.2.1Appendix F for critical velocity calculations.
- 5. Assumptions will further be refined at a later time.

3.2.1 Design Fire Scenario

The DART D2 rolling stock is a SLRV. The peak fire heat release rate is assumed to be 14.9 MW. The fire growth rate is based on a medium fire growth rate defined by:

$\dot{Q} = \alpha t^2$

Where \dot{Q} is the heat release rate in W α is the growth rate coefficient 11.722 w/s^2 t is time in seconds

Fire growth rate curve is shown in Figure 9.

Additional user defined characteristics were implemented as well:

- Heat of Combustion of 39.4 MJ/kg.
- Soot Yield of 0.165 kg (soot) /kg (fuel).
- Water Yield of 0.695 kg (water)/kg (fuel).
- CO Yield of 0.14 kg (CO)/kg (fuel).
- Mass specific extinction coefficient for smoke produced by pyrolysis Km=4703 m²/kg

Carbon Monoxide Model

One product of combustion includes Carbon Monoxide (CO) Species development for Carbon monoxide which is specified by 0.14 kg/kg at the fire source. Although carbon monoxide exposure is an important characteristic in determining tenability of an egress path this study used visibility obscuration due to smoke as the determining factor for tenability.

Smoke Model

Species development for smoke in the CFD simulation is guided by a soot yield factor of 0.165 kg/kg. A custom field function in fluent is used to visualize areas within the station that would be impacted by smoke. The numerical scale used to visualize smoke obscuration in CFD Fluent model is from 0 to 10 m where 0 represents an area where smoke completely obscures the visibility of passengers and 10 represents an unobstructed sight range of 10 meters.

3.2.2 SES Inputs

SES software is an engineering tool programmed to evaluate complex flow relationships throughout an underground rail system envelope by ventilation system operations in multiple locations. Used as a

standard method in the transportation industry, SES provides accurate prediction of airflows in managing underground hazard conditions. SES software incorporates evaluation of radiation and convection heat transfer, climatic influences on airflow, pressure and airflow relationships, and influences of train piston effect in its calculations.

Inputs and assumptions for the SES simulations include:

- 1. Outdoor air temperature is 70.6 degrees F and 61.6 degrees F wb¹
- 2. Tunnel air temperature is 81.2 degrees F and 63.3 degrees F wb
- 3. Rolling stock is DART Kinkisharyo
- 4. Friction loss was calculated based on input of wall roughness of 0.01 ft on concrete surface, and the other areas with fixtures such as lightings, wirings, etc are assumed 0.127 ft.

To develop the appropriate pressure losses associated with the underground station. A non-dimensional factor k applied at various locations where cross section area changes, turns, and other locations there would be a resistance to airflow.

	K factor					
Geometry	Forward Positive	Forward Negative				
Cross sectional area changes from Tunnel to						
Station	0.06	0.04				
Open Track Damper	2.205	2.205				
Open Over Track Exhaust	2	2				
Open Over Platform Exhaust	1	1				
Fan Plant	0.259	0.259				
Open Platform screen doors	4	4				

Table 3: SES K Factors

3.2.3 CFD Input

Geometry Simplifications

CFD model of current Commerce Station configuration is shown in Figure 10: CFD Model. Modifications were made to the station configuration to simplify the CFD analysis, these include simplifying the ventilation path to surface, excluding limited airflow paths from the model, which includes emergency egress stairs, and elevators.

¹ Reference ASHRAE Climatic Design Conditions 2017

Figure 10: CFD Model

Initial CFD simulations wall thermal boundary condition assumes the wall as no slip boundary, standard wall roughness with a roughness constant of 0.5 is assumed. The walls participate in the thermal radiation calculation and conjugate heat transfer boundary condition are applied.

Ventilation related boundary conditions as show in Figure 10 are listed in .

CFD Simulation No.	R9_3r3	R9_4	R9_5			
Fire Scenario	(a)	(b)	(c)			
CSW Exhaust	-105.3	-78.8	-79.5			
CSE Exhaust	-97.6	-73.1	-79.5			
NW Portal	11.6	10.2	11.7			
NE Portal	Open	Open	Open			
SW Portal	74.5	67.2	32.8			

Table 4: Ventilation flow parameters for fire scenario (a), (b), and (c)

SE Portal	-66.1	-39	-31.4
West Headhouse Entrance	Open	Open	Open
East Headhouse Entrance	Open	Open	Open
OPE Damper	Open	Open	Open
OTE Damper	Open	Closed	Closed

Notes:

- 1. Table will be updated upon Completion of simulations
- 2. Positive values refer to airflow into the station domain, negative values indicate airflow out of the station domain.

The train geometry for the DART D2 project is modeled after the Kinkishayo SLRV (Super Light Rail Vehicle). It is assumed during a fire scenario at a station only the doors on the platform side would be open to allow passenger egress. Windows would be broken due the heat of the fire and is there simulated as open as well.

Figure 11: CFD Train

Geometry simplifications were made to the CFD model to improve cell quality and count. For example, the semicircular space above the trackway is has been represented with rectangular duct with a similar hydraulic diameter as shown in Figure 12. After applying geometry simplifications, overall cell count of the model after meshing is 3.8 million cells. The cell size around the simplified duct ranges from (0.25^3) ft^3 to roughly 1 ft^3.

Figure 12. Geometry Simplification

Fires within the station will be exhaust through over track dampers. Current size for over track dampers are assumed to be 50 SF.

Boundary Conditions for the CFD model are determined by SES results.

4 Results and Discussion

4.1 SES Results

A summary of the SES simulations are shown in Table 5, more details are provided in the SES simulation tracker in Appendix B. SES simulations are used to establish the entire airflow network within the underground alignment. SES runs can typically provide an initial indicator of a pass or fail criteria with longitudinal ventilation schemes, detailing whether a simulation has achieved 'critical velocity' for push

pull scenarios. For station extraction cases the airflow rates from SES simulations are used as boundary conditions for subsequent CFD simulations.

SES Simulation No. (Case #)	3r1	4	5	6	7	10	11	9
Station Fire Scenario	(a)	(b)	(c)	N/a	N/a	N/a	N/a	N/a
SES File Name	D2_case3r 1	D2_case4	D2_case5	D2_push pull_01	D2_push pull_02	D2_push pull_03	D2_push pull_04	D2_push pull_01r2
Fire Location	625	625	605	106	306	118	318	302
Fire Zone	410	410	420	120	100	300	320	100
Evac. Direction	West/East	West/East	ast West/East	West	West	East	East	West
Smoke Direction	Extraction	Extraction	Extraction	East	East	West	West	East
MCW	-	-	-	2E	2E	-	-	3E
MCE	-	-	-	-		2E	2E	-
CSW	1E	1E	1E	-	- \	25	25	-
CSE	1E	1E	1E		-	-	-	-
CBW	-	-	-		-		-	-
CBE	-	-	-	-			-	-
Pass/Fail	N/a	N/a	N/a	Pass	Pass	Pass	Pass	Pass

Table 5: SES Simulations

Notes:

- 1. For further detail see the node network diagrams in Appendix C. As well as results in Appendix B
- 2. See Appendix D for ventilation schematic with ventilation zones labeled.
- 3. Critical velocity applies to longitudinal ventilation, and not extraction ventilation.
- 4. Pass Fail criteria undetermined in extraction ventilation cases using SES of the 2D nature of its analysis CFD simulation is required to determine if simulation passes.
- 5. There are 2 fan plants in each station, each fan plant consists of three fans, 2E refers to two fans in a fan plant operating in exhaust mode, 2S refers to two fans in a fan plant operating in supply mode.
- Case No. 3r1: This case represents Fire Scenario (a). This scenario entails a middle train fire
 event within the south track. The ventilation system is postured in an extraction configuration
 where the west and east fan plant (CSW) and (CSE) are both in exhaust. Platform screen doors
 on the south track are open, and eastbound over track ventilation dampers are open, as well as
 over platform dampers.

Figure 13: SES Case No. 3 Diagram

 Case No. 4: This case represents Fire Scenario (b). This scenario entails fire event within the south track with no trains present. The ventilation system is postured in an extraction configuration where the west and east fan plant (CSW) and (CSE) are both in exhaust. Platform screen doors on the south track are open, and eastbound over track ventilation dampers are open.

Figure 14: SES Case No. 4 Diagram

• Case No. 5: This case represents Fire Scenario (c). This scenario entails a fire event within the enclosed platform. The ventilation system is postured in an extraction configuration where the

west and east fan plant (CSW) and (CSE) are both in exhaust. Dampers within the enclosed the enclosed platform are open.

DART D2 Preliminary Ventilation Report

Figure 14: SES Case No. 5 Diagram

• Case no. 6: This case represents a tunnel fire in Eastbound track between west portal and metro station. For this case the evacuation direction is towards the portal (west) and the smoke extraction direction is towards metro station (east). Fire zone is 120. Two fans in the metro station west plant (MCW) are operating in exhaust mode. Critical velocity is achieved. Non incident tunnel track dampers 902 and 907 are closed.

Figure 16: SES Case No. 6 Diagram

• Case no. 7: Tunnel fire in Westbound track between west portal and metro station. For this case the evacuation direction is towards the portal (west) and the smoke extraction direction is towards metro station (east). Fire zone is 100. Two fans in the metro station west plant(MCW) are operating in exhaust mode. Critical velocity is achieved. Non incident tunnel track dampers 901 and 906 are closed.

Figure 17: SES Case No. 7 Diagram

• Case no. 10: Tunnel fire in Eastbound track between metro station and commerce station. For this case the evacuation direction is towards the portal (west) and the smoke extraction direction is towards metro station (east). Fire zone is 320. Two fans in the metro station east plant (MCE) are operating in exhaust mode and two fans in commerce station west plant (CSW) in supply mode. Critical velocity is achieved. Non incident tunnel track dampers 907 and 912 are closed.

 Case no. 11: Tunnel fire in Westbound track between metro station and commerce station. For this case the evacuation direction is towards the portal (west) and the smoke extraction direction is towards metro station (east) Fire zone is 300. Two fans in the metro station east plant (MCE) is operating in exhaust mode and two fans in commerce station west plant (CSW) in supply mode. Critical velocity is achieved. Non incident tunnel track dampers 906 and 911 are closed.

Figure 19: SES Case No. 11 Diagram

• Case no.9: Tunnel fire in Eastbound track near west portal. For this case the evacuation direction is towards the portal (west) and the smoke extraction direction is towards metro station (east). Fire zone is 120. **Three** fans in the metro station west plant (MCW) are operating in exhaust mode. Critical velocity is achieved. Non incident tunnel track dampers 902 and 907 are closed. There fans have to be turned on to achieve critical velocity due to the 6% slope of the tunnel near the west portal.

4.2 CFD

Results from CFD simulations will be provided in Table 6 upon completion. Further details can be found in Note all simulation train fire events assume fire has

Table 6: CFD Results

	CFD Config. ID	(Name)	R9_3r2	R9_4	R9_5	
	SES Case	(Case #)	3r1	4	5	
	Fire Scenario		(a)	(b)	(c)	
	Fire Location		South Track Middle Train	South Track No Train	Center Platform	
	Exhaust Scheme		Extraction	Extraction	Extraction	
	Smoke Direction		Extraction	Extraction	Extraction	
		Prtl NW	6.5	10.2	11.7	
	Input	Prtl NE	Vent	Vent	Vent	
	Boundary	Prtl SW	153.2	67.2	32.5	
	(kcfm)	Prtl SE	150.3	39	31.4	
4	(Kenny	West Vent	-210	-78.8	-79.5	
		East Vent	-205.2	-73.1	-79.5	
		Prtl NW	6.5			
	Recorded	Prtl NE	-7.1			
	Boundary	Prtl SW	153.2			
	Conditions	Prtl SE	150.3			
	(KCIM) ³	West Vent	-210			
		East Vent	-205.2			
	Pass/Fail ¹		Pass			

- 1. Simulation pass/fail is determined by the system's ability to keep smoke from propagating towards egress walkway paths.
- 2. A negative value indicates supply from a boundary condition (airflow "into" domain). A positive value indicates exhaust from the domain.
- 3. Simulation results updated upon completion

4.2.1 Case No.3r1

The CFD configuration represents fire scenario 1 where a center train on the south track is on fire. The ventilation method used for this scenario is the same as SES Case no.3r1 with an extraction ventilation approach. In this case both the west fan plant (CSW) and the east fan plant (CSE) are in exhaust with both the OTE and OPE terminals open. Simulation time is 4 minutes (8 minutes after fire has started). Results indicate that smoke is maintained with the center of the platform when the OPE terminals are.

Contours of visblty-lgt-ref-m (Time=2.4000e+02) HNTB Corporation

200123_DART_D2_Commerce_Station_r9_3r2 Feb 21, 2020 ANSYS Fluent Release 19.2 (3d, pbns, spe, ske, transient)

Appendix A. Fan Pressure Calculation

HNTB

Made By: Checked by Bkchk by: DART D2

2/10/2020 Job No.: 61144

Comparison of Duct Section with Abrupt Contraction @ Silencer Outlet To Flex Connection - Study of Airflow At Outlet of Baffle To Flex Connection

2/21/2020 Sheet No .: File Name: \\seaw00\jobs2\61144\Redbook\08_TechProd\20%_Cncpt_Dsgn_Rpt\[Dart D2 Duct Minor Losses.xlsx]HV-1 with Fan

PROJECT NAME:

CALCULATION:

Air density at 70deg F and 14.7 psia:

jn

tvt Date:

0.081 lbm/ft3 Air temperature 32 deg F.

Date:

Date:

HIDE THE ORANGE ROWS FOR PRINTING 1. ENTER RECTANGULAR DUCT SIZE OR ROUND DUCT SIZE, NOT BOTH. FORMULAS WILL IGNORE RECTANGULAR DUCT SIZE IF ROUND DUCT SIZE IS ENTERED INTO CELL. 2. VALUES IN COLUMN "Duct Pressure Drop/100 ft (in. w.ater)" WILL BE RED TEXT WITH RED SHADE BACKGROUND IF PRESSURE DROP EXCEEDS 0.25 IN WATER PER 100 FT

 Length Contract

90deg turn Length Exit w/ elbow Damper

1

		ASHRAE			Terminal/		Recta	angular Duc	t Size					Velocity	Duct	Summary of	Reynolds	Friction	Duct Pressure	Fitting	Equipment	Total	Notes
Duct	Fitting	Fitting(s)	Duct	Duct	Branch	Airflow	Duct Size	Duct Size	Duct Size	Duct Size	Duct Area	Room NC/	Velocity	Pressure	Length	Fitting Loss	Number	Factor	Drop/100 ft	Pressure Drop	Pressure Drop	Pressure Drop	
Section	Name	No.	Material	Roughness, ft	. Airflow	(cfm)	(W, in.)	(L, in.)	(Dh, in.)	(Dia., in.)	(ft ²)	Max Velcity	(fpm)	(in. water)	(ft)	Coefficients	Re	f	(in. water)	(in. water)	(in. water)	(in. water)	
		(Ref 1, 2)	е		(cfm)							(fpm)					(Ref 4)	(Ref 3)					
1	Damper	Fig 2.28	Galv. Stl.	0.0005	500000	500000	144	156	149.76		156.00	35/2000	3205	0.6918		0.44	4.69E+06	0.0000	0.0000	0.3044		0.3044	1, 2
2	Entry	Fig 2.28	Galv. Stl.	0.0005	500000	500000	144	156	149.76		156.00	35/2000	3205	0.6918		0.5	4.69E+06	0.0109	0.0602	0.3459		0.3459	1, 2
3	90deg turn	Fig 2.28	Galv. Stl.	0.0005	500000	500000	144	156	149.76		156.00	35/2000	3205	0.6918		1.2	4.69E+06	0.0109	0.0602	0.8302		0.8302	1, 2
4	Length	Fig 2.28	Galv. Stl.	0.0005	500000	500000	144	156	149.76		156.00	35/2000	3205	0.6918	170.00		4.69E+06	0.0109	0.0602	0.0000		0.1024	1, 2
5	Abrupt open	Fig 2.28	Galv. Stl.	0.0005	500000	500000	276	138	184		264.50	35/2000	1890	0.2406		0.3	3.40E+06	0.0109	0.0170	0.0722		0.0722	1, 2
6	90deg turn	Fig 2.28	Galv. Stl.	0.0005	500000	500000	408	120	185.45455		340.00	35/2000	1471	0.1456		1.2	2.67E+06	0.0111	0.0104	0.1748		0.1748	1, 2
7	Length	Fig 2.28	Galv. Stl.	0.0005	500000	500000	408	120	185.45455		340.00	35/2000	1471	0.1456	35.00		2.67E+06	0.0111	0.0104	0.0000		0.0037	1, 2
8	Contraction	Fig 2.28	Galv. Stl.	0.0005	500000	500000	318	120	174.24658		265.00	35/2000	1887	0.2397		0.05	3.22E+06	0.0110	0.0181	0.0120		0.0120	1, 2
9	Length	Fig 2.28	Galv. Stl.	0.0005	500000	500000	228	120	157.24138		190.00	35/2000	2632	0.4664	32.00		4.05E+06	0.0109	0.0388	0.0000		0.0124	1, 2
10	Contraction	Fig 2.28	Galv. Stl.	0.0005	500000	250000	1/4	120	142.04082	400	145.00	35/2000	1/24	0.2002	40.00	0.05	2.40E+06	0.0114	0.0194	0.0100		0.0100	1, 2
10.1	Length	Fig 2.28	Galv. Sti.	0.0005	500000	250000			#DIV/0!	120	78.54	35/2000	3183	0.6823	10.00	0.55	3.74E+06	0.0113	0.0771	0.0000		0.0077	1, 2
10.2	Silencer	Fig 2.28	Galv. Sti.	0.0005	500000	250000			#DIV/0!	120	78.54	35/2000	3183	0.6823		0.55	3.74E+06	0.0000	0.0000	0.3753		0.3753	1, 2
10.3	Contraction	Fig 2.28	Galv. Sti.	0.0005	500000	250000			#DIV/0!	104.00	58.99	35/2000	4238	1.2094		0.05	4.31E+06	0.0114	0.1595	0.0605		0.0605	1, 2
10.4	Diffusor	Fig 2.20	Galv. Sti.	0.0005	500000	250000			#DIV/0!	104.00	42.24	35/2000	1000	2.3593		0.12	3.09E+00	0.0110	0.3739	0.0000		0.0000	1, 2
10.5	Siloncor	Fig 2.20	Galv. Sti.	0.0005	500000	250000			#DIV/0!	120.00	79.54	35/2000	4230	0.6922		0.12	4.31E+00	0.0114	0.1595	0.1431		0.1451	1,2
10.0	Longth	Fig 2.20	Galv. Sti	0.0005	500000	250000			#DIV/0	120.00	79.54	35/2000	2192	0.0023	10.00	0.55	3.74E+06	0.0000	0.0000	0.0700		0.077	1,2
10.7	Diffusor	Fig 2.20	Galv. Sti.	0.0005	500000	500000	201	258	225 96078	120	360.13	35/2000	1388	0.0023	10.00	0.5	3.07E+06	0.0113	0.0074	0.0000		0.0649	1,2
12	90deg turn	Fig 2.20	Galv. Sti	0.0005	500000	500000	228	396	289 38462		627.00	35/2000	797	0.0428		1.2	2 26E+06	0.0100	0.0019	0.0043		0.0043	1.2
13	Length	Fig 2.20	Galv. Stl	0.0005	500000	500000	228	396	289 38462		627.00	35/2000	797	0.0420	90.00	1.2	2.20E+06	0.0100	0.0019	0.0014		0.0017	1.2
14	Exit w/ elbow	Fig 2 29	Galv Stl	0.0005	500000	500000	228	396	289 38462		627.00	35/2000	797	0.0428	50.00	1.8	2 26E+06	0.0109	0.0019	0.0000		0.0011	1 2
15	Damper	Fig 2.28	Galv. Stl.	0.0005	500000	500000	228	396	289 38462		627.00	35/2000	797	0.0428		0.44	2.26E+06	0.0109	0.0019	0.0188		0.0188	1.2
	2					190000	220	000	200000		127.00	22.2000		2.0120		0.11		2.0100	0.0010	0.0100		0.0100	., _
																					Total	3.0534	4

F.S. 20%

4.58

K-factor to achieve drop Resulting Drop 1.830013698
 Total Vol
 Section Pressure Drop
 Area (ft²)
 V (fpm)

 102500.8
 1.8298
 156
 3205.1282
 Individual Pressure Drops References: 1. ASHRAE Duct Fitting Database, Version 2.2.5 400 1.223765906 1.2236 1250 2. 1989 Fundamentals, Chapter 32, Fitting Loss Coefficients ASHRAE 1997 Fundamentals, Equation 32.20 4. ASHRAE 1997 Fundamentals, Equation 32.21 4. ASHRAE 1981 Fundamentals, Chapter 33, Duct Design Notes: Fittings are located at the beginning of a duct section
 Equipment is located at the end of a duct section 3. Equipment loss is for register Damper

4. Equipment loss is for combination fire/smoke damper

	Entry	= 90deg turn	Length	Abrupt open	90deg turn					
	 Contraction 	Length	 Contraction 	Length	 Silencer 					
tion	 Motor 	Diffuser	Silencer	Length	Diffuser					

Appendix B. SES Simulation Tracker

SSP	Date:
	Date:

2/1/2020 Job Number:

Sheet No:

61144

1

C:\Users\trtran\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\[Copy (1) of APPENDIX_DART SES tracker.xlsx]Dart D2

Dart D2 SES Run Log	
Link to SES files =	
Link to SES results diagram =	

SES files SES post

No	File Name	Notes	Mode	Fire Segment (Segment) ¹	NON INCIDENT DAMPERS CLOSED ¹	INCIDENT DAMPERS CLOSED	Vent Zone ²	Evac direction	Smoke Direction	Critical Velocity (fpm) ³	Critical Airflow (kfpm) ³	Run Velocity (fpm)	Run Airflow (kcfm)	Pass/Fail ⁴	мсw	MCE	csw	CSE	свw	CBE	Results diagram	Node network diagram
1	D2_case1	fire in station track, 3 platform doors open, fan curve is adjusted	Extraction	625	912, 917	none	410	N/A	Extraction	N/A	N/A	N/A	N/A	N/A	-	-	1 E	1 E	-	-	D2_case1.pdf	node dart D2.pdf
2	D2_case2	fire in station track, 3 platform doors open, fan curve is adjusted, OPENED PLATFORM DAMPERS	Extraction	625	912, 917	none	410	N/A	Extraction	N/A	N/A	N/A	N/A	N/A	-	-	1 E	1 E	-	-	D2_case2.pdf	<u>node dart D2.pdf</u>
3	D2_case3	fire in station track, 3 platform doors open, fan curve is adjusted, both platfrom dampers are open	Extraction	625	912, 917	none	410	N/A	Extraction	N/A	N/A	N/A	N/A	N/A	-	-	1 E	1 E	-	-	D2_case3.pdf	node dart D2.pdf
3r1	D2_case3r1	Increase fan capacity from case 3	Extraction	625	912, 917	none	410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-	-	1 E	1 E	-	-	D2_case3r1.pdf	node dart D2.pdf
4	D2_case4	track fire, no train, 3 platform doors open	Extraction	625	912, 917	none	410	N/A	Extraction	N/A	N/A	N/A	N/A	N/A	-	-	1 E	1 E	-	-	D2_case4.pdf	node dart D2.pdf
5	D2_case5	platform fire, no train	Extraction	605	N/A	none	420	N/A	Extraction	N/A	N/A	N/A	N/A	N/A	-	-	1 E	1 E	-	-	D2_case5.pdf	node dart D2.pdf
6	D2_push pul	tunnel fire	Push Pull	106	902,907	none	120	west	east	459	131	467	144	Pass	2E	-	-	-	-	-		Node Dart D2 with PSE.pdf
7	D2_push pul	tunnel fire	Push Pull	306	901,906	none	100	west	east	459	131	630.7	194.2	Pass	2E	-	-	-	-	-		Node Dart D2 with PSE.pdf
8	D2_push pul	tunnel fire near the west portal	Push Pull	302	901,906	none	100	west	east	459	131	283.5	87.3	fail	2E	-	-	-	-	-		Node Dart D2 with PSE.pdf
9	D2_push pul	tunnel fire near the west portal, 3 fans ON at MCW	Push Pull	302	901,906	none	100	west	east	459	131	682.1	210.1	Pass	3E	-	-	-	-	-		Node Dart D2 with PSE.pdf
10	D2_push pul	tunnel fire	Push Pull	118	907,912	none	320	east	west	459	131	799.6	227.9	Pass	-	2E	25	-	-	-		Node Dart D2 with PSE.pdf
11	D2_push pul	tunnel fire	Push Pull	318	906, 911	none	300	east	west	459	131	911.5	259.8	Pass	-	2E	25	-	-	-		Node Dart D2 with PSE.pdf

Notes

1 Refer to Node Network Diagram

2 Refer to Ventilation Schematic for Vent Zone identification

3 Critical Velocity refers to the air velocity required to prevent the backlayering of smoke. Critical Velocity is calculated only for longitudinal ventilation configurations and does not apply to extraction ventilation.

4 The pass fail criteria is based on whether or not the simulation run velocity meets or exceeds the calculated critical velocity for logitudinal ventilation configurations, and does not apply to extraction ventilation.

CASE 3r1

CASE 4

CASE 6

CASE 7

CASE 10

CASE 11

CASE 9

Appendix C. Node Network Diagram

HNTB	SIMULATION FIF	N RESULTS FI RE SCENARIO	_OW DIAGRAM AT X	DART	D2,	SES with	NC P
	RUN:	DATE	SHEET				

HNTB	SIMULATION FIF	N RESULTS FI RE SCENARIO	_OW DIAGRAM AT X	SES N DART D2	OD , v
	RUN:	DATE	SHEET		

Appendix D. Ventilation Schematic

2020 01:25:45 PM R_US_Central_01/Do

o4.

March (uscen01

lesday. '/pwhdru

/edn

Defe

DART

		NOT	FOR CONSTRUCTION	
		NOT AN	APPROVED DRAWING	
		PRELI	MINARY 20% DESIGN	
		CONTRACT SHEET NO	•	
	SCALE			
DARI PROJECI	NTS	LIGHI H	RAIL TRANSIT SYSTEM	
	DRAWN S. PARAYIL	LIN	E SECTION CBD-2	
	DESIGNED			
	CHECKED			
	S. CASSAUT		SUBWAT STSIEM	
DART	J. CASEY	MASTER	VENTILATION SCHEMATIC	
<i>——</i>	DATE OF WAR 2020			
/ ®	06 MAH 2020	CONTRACT	DHC No	DEV
	CAES	LUNTHALT	MC7-0001	KE V

pw://pwhdruscen01:HDR_US_Central_01/Documents/Dollas_Area_Rapid_Transit_DART_Dallas_TX/DART_General_Planning_CS_V1/6.0_CAD_B1M/6.2_Work_In_Prog

pwh.

WC 1 - 0005 ONC Nº

AMEND	CR	DATE	DESCRIPTION	BY	ENG	СНК АР	IT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING OR PERMIT PURPOSES.	TBPE Firm Registration No. 420		
							HNTB CORPORATION	Ine HNIB Companies Engineers Architects Planners		
							ON 03/06/2020	HNTB Corporation		
							JERRY STEVEN CASEY, P.E. NO. 65588			\backslash
							AUTHORITY OF:		· · ·	
							FOR THE PURPOSE OF REVIEW UNDER THE		DART	
							THIS DOCUMENT IS RELEASED			
							1			
							IN-PROGRESS			DARI PROJE

pwh.

pw://pwhdruscen01:HDR_US_Central_01/Documents/Dollas_Area_Rapid_Transit_DART_Dollas_TX/DART_General_Planning_CS_V1/6.0_CAD_BIM/6.2_Vork_In_Prog

Appendix E. CFD Simulation Tracker

<u>DART D2</u>

File/Simulation Location: www.seawooly.obs2/62726/Analysis/FLS/CFD Simulations

	Key:	Yellow highlight indicates a successful and relial	ble simulation																				
		Pending Simulations (Antcipated)																					
F		Currently Running Simulation(s)																					
L		Simulations that need to be restarted																					
Г		Simulation Data								Fire Characterstic Inputs			Smoke Char	acterstic Input	ts				Boundary/In	duced Conditions			
	Submitted	Rev #	Date	Sim. Comp.	#Main Meshes	Cell Ct.(main mesh)	Time to Fin	Fire Size	Fire Curve	Growth Rate	Fire Loc.	CO Yield	Soot Yield	Vis. Factor	Max. Vis.	Sth Track Dpr	Nth Track Dpr	Sth OPE	Nth OPE	NW/SW Prtls	NE/SE Prtls	West Stair	East Stair
	Report (Date)					(*10 ³)	(s)	(MW)		(s)		(kg/kg)	(kg)kg)		(m)	(kCFM)	(kCFM)	(kCFM)	(kCFM)	(kCFM) - Ea	(kCFM) - Ea	(kcfm)	(kcfm)
	700		2 /4 2 /2022	6540000		2000		110	440000000	420		0.1.4	0.465		20	755	N I	N/	400		N 1/	~	
	IRD	rev1	2/12/2020	SEAD909	4	3800	N/a	14.9	14.9 MW/120 sec	120	South Trk Center Train	0.14	0.165	IBD	30 m	IBD	N/a	N/a	-100	N/a	N/a	Open	Open
			2/13/2020	SEAD909	4	3800	N/a	14.9	14.9 MW/120 sec	120	South Trk Center Train	0.14	0.165	TBD	30 m	TBD	N/a	N/a	-100			Open	Open
		rev2																		(N/a)/(50)	N/a		
			_ / _ /																				
		reva	2/13/2020	SEAD909	4	3800	N/a	14.9	14.9 MW/120 sec	120	South Trk Center Train	0.14	0.165	TBD	30 m	TBD	N/a	N/a	-100	N/a	N/a	Open	Open
		1603																			i vy a		
%			2/13/2020	SEAD909	4	3800	N/a	14.9	14.9 MW/120 sec	120	South Trk Center Train	0.14	0.165	TBD	30 m	TBD	N/a	N/a	-100	N/a		Open	Open
20		rev4																			N/a		
L			0 /4 0 /0000	~~~~~~~			/			400			0.465					/	400				
tic		rev5	2/13/2020	SEAD909	4	3800	N/a	14.9	14.9 MW/120 sec	120	South Trk Center Train	0.14	0.165	IBD	30 m	IBD	N/a	N/a	-100	N/a	N/a	IRD	IBD
sta																							
e			2/18/2020	SEAD909	4	3800	1200	14.9	1.055 MW at 300 sec		South Trk Center Train	0.14	0.165	TBD	30 m							Open	Open
erc		Case 1								T-squared medium growth						130	CLOSED	CLOSED	CLOSED	12.4/55.4 kcfm	-12.1/42.9 kcfm		
Ĕ		Case 2	2/20/2020	SEAD909	4	try to reduce to <2 mil?	1200	14.9	1.055 MW at 300 sec	T-squared medium growth	South Trk Center Train	0.14	0.165	TBD	30 m	110	CLOSED	45	CLOSED	11.9/57.1 kcfm	-11.6/40.4 kcfm	Open	Open
E			2/21/2020	SFAD909	<u>л</u>	3800	1200	14 9	1 055 MW at 300 sec		South Trk Center Train	0 14	0 165	TRD	30 m							Open	Onen
C		Case 3	2/21/2020			5000	1200	14.5	1.055 1000 300 300	T-squared medium growth		0.14	0.105		50 11	110	CLOSED	45	45	11.6 /74.7 kcfm	-11.2/66.2 kcfm	open	open
		Case 4	2/24/2020	SEAD909	4	try to reduce to <2 mil?	1200	3.5	1.055 MW at 75 sec	T-squared Ultrafast growth	Trackway fire	0.14	0.165	TBD	30 m	130	CLOSED	CLOSED	CLOSED	10.2/67.3 kcfm	-10/39.1 kcfm	Open	Open
		Case 5	2/26/2020	SEAD909	4	try to reduce to <2 mil?	1200	3.5	1.055 MW at 75 sec	T-squared Ultrafast growth	Platform fire	0.14	0.165	TBD	30 m	CLOSED	CLOSED	45	45	11.7/32.8 kcfm	-10.7/-31.1 kcfm	Open	Open
																			G				

	CFD S	Supporting File Links	
Scheme File	User Defined Function (UDF Files)	Mesh	
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\DART_slow_FGR_2.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r7_1.msh	<u>\\sea</u> 23_[
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\DART_slow_FGR_2.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r7_1.msh	<u>\\sea</u> 23_[
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\UDF_BSV_VLB_Station_3fire.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r7_1.msh	<u>\\sea</u> 23_[
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\DART_slow_FGR_2.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r7_1.msh	<u>\\sea</u> 23_[
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\DART_slow_FGR_2.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r8.msh	<u>\\sea</u> 23_[
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\DART_slow_FGR_2.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r9.msh	<u>\\sea</u> 23_[
O:\61144\Analysis\CFD\Scheme\DART_master.scm	\\sead909\E\$\DATA909_61144_DART_D2\DART_slow_FGR_2.c	O:\61144\Analysis\CFD\Mesh\200123_DART_D2_C ommerce_Station_r9.msh	<u>\\sea</u> 23_[

		Simulation Notes - Consolidated Changes for simulation
File Name	SES File Used	
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r7_3.cas	N/a	Test Fire Case, Middle train fire. Growth Rate 14.9 MW/ 120 sec, exhaust 100 KCFM split between 2 fan plants. 2 station dampers open. Failed Flow Rates too high
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r7_4.cas	N/a	Test Fire Case, Middle train fire. Growth Rate 14.9 MW/ 120 sec, exhaust 100 KCFM split between 2 fan plants. 2 station dampers open. Induced 50kcfm from SW portal. Flow Rates Diverged as soon as fire started
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r7_5.cas	N/a	Test Fire Case, Middle train fire. Growth Rate 14.9 MW/ 120 sec, exhaust 100 KCFM split between 2 fan plants. 2 station dampers open. Using previous UDF from BART Silicon Valley VLB Station. Flow Rates Diverged
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r7_6.cas	N/a	Test Fire Case, Middle train fire. Growth Rate 14.9 MW/ 120 sec, exhaust 100 KCFM split between 2 fan plants. 2 station dampers open. Opened up Platform screen door wall Flow Diverged
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r8_3.cas	N/a	Test Fire Case, Middle train fire. Growth Rate 14.9 MW/ 120 sec, exhaust 100 KCFM split between 2 fan plants. 2 station dampers open. Moved Train away from Platform Edge
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r9_1.cas	<pre>\\seaw00\jobs2\61144\Redbook\08_TechProd\20 % Cncpt_Dsgn_Rpt\dart SES\SES post\D2_case1.xlsm</pre>	Closed Gap in wall discovered in rev5, added Enclosed Platform Damper to mesh, Closed for this simulation. 130KCFM exhaust split between 2 fan plants, middle train fire, 14.9 MW, Simulation starts 4 minutes after fire has started, fans are on at this point. smoke enters platform simulation fail
ad909\E\$\DATA909_61144_DART_D2\2001 DART_D2_Commerce_Station_r9_1.cas	<pre>\\seaw00\jobs2\61144\Redbook\08_TechProd\20 % Cncpt_Dsgn_Rpt\dart SES\SES post\D2_case1.xlsm</pre>	Closed Gap in wall discovered in rev5, added Enclosed Platform Damper to mesh, Closed for this simulation. 130KCFM exhaust split between 2 fan plants, middle train fire, 14.9 MW, Simulation starts 4 minutes after fire has started, fans are on at this point

Appendix F. Critical Velocity Calculation

Date: 2/14/2020 Job Number:

1

Sheet No.: 1

PROJECT NAME: DART D2

File Name: \\seaw00\jobs2\61144\Redbook\08_TechProd\20%_Cncpt_Dsgn_Rpt\\dart SES\[cr_vel_ for DART D

Vehicle Tunnel Smoke Backlayering Calculati	ion	Station Are	a			
14.69 MW LOAD	Value	Variable	Linita			
Critical Valacity Constant			nono			
Grade Factor	1.0	K2	none			
Acceleration of Gravity	32.2	n 2	ft/(sec^2)			
Height of the tunnel	16	у Н	ft			
Fire Energy Load	13941	0	n Rtu/sec	949	14 69 M\\/	
Specific heat of air	0.24	Cn	Btu//lb*F)	545		
Perpendicular area of tunnel	230	A	ft^2			
Initial quess Average temp of fire site gases	1200	Tf	R			
Average Temperature of approach air	539 33	Ti	R	459	80 33 DEG E	from CFD model (300K)
Density of air	0.0735	rho	lb/(ft^3)	100		From engineering toolbox
Iteration constant	2					
Units	R	FPS	R			
	Iterative So	olution				
	Tf	Vc	Tfit			
	1200	6.881795	1038.628			
	1119.314	7.043169	1027.188			
	1073.251	7.142423	1020.409			
	1046.83	7.201954	1016.432			
	1031.631	7.237115	1014.114			
	1022.872	7.257692	1012.768			
	1017.82	7.269669	1011.988			
	1014.904	7.276618	1011.537			
	1013.22	7.280642	1011.276			
	1012.248	7.282971	1011.125			
	1011.686	7.284317	1011.037			
	1011.362	7.285095	1010.987			
	1011 175	7 285544	1010 958			
	1011 066	7 285804	1010.941			
	1011.000	7 285954	1010 931			
	1011.004	7 2860/1	1010.001			
	1010.000	7 286091	1010.020			
	1010.047	7 28612	1010.020			
	1010.900	7 286136	1010.921			
	1010.920	7 286146	1010.02			
	1010.924	7 286152	1010.919			
	1010.921	7 286155	1010.919			
	1010.92	7.200155	1010.910			
	1010.919	7 286158	1010.918			
	1010.919	7 226150	1010.910			
	1010.919	7 286150	1010.910	150	551 02 DEG E	
	1010.910	7.200109	1010.910	400	551.92 DEGT	
Valacity for amole backlovering		107 17		I		
Velocity for smoke backlayering		437.17	FPINI			
REQUIRED AIRFLOW DOWN TUNNEL TO F	PREVENT	SMOKE BA	CKLAYERI	NG		
		100,549	CFM			
TOTAL REQUIRED SMOKE EVACUATION P	LOW					
		201098				
Flow splits to each fan plant		100,549				
Considering Fire Site Temperatures Flow Car	pacity Expa	nsion		6.870637		
	,					
Assume duct smoke cooling and air mixture o	ools effectiv	ve temperat	ure of smol	ke inlet into v	ventilation system	
Eira Sita Tamparatura Expansion Easter	3	·		301647	-	
The one remperature Expansion racio	3			501047		

$$\begin{split} V_{c} &= K_{1}K_{g} \left(\frac{gHQ}{\rho C_{p}AT_{f}} \right)^{1/3} \\ T_{f} &= \left(\frac{Q}{\rho C_{p}AV_{c}} \right) + T \end{split} \tag{D}. \end{split}$$

1)

where:

- V_c = critical velocity [m/sec (fpm)]
- $K_1 = 0.606$ (Froude number factor, Fr^{-1/3})
- K_{g} = grade factor (see Figure D.1)
- g = acceleration caused by gravity [m/sec² (ft/sec²)]H = height of duct or tunnel at the fire site [m (ft)]
- Q = heat fire is adding directly to air at the fire site [MW (Btu/sec)]
- ρ = average density of the approach (upstream) air $[kg/m^{3} (lb/ft^{3})]$
- C_p = specific heat of air [kJ/kg K (Btu/lb°R)]
- \dot{A} = area perpendicular to the flow [m² (ft²)]
- T_f = average temperature of the fire site gases [K (°R)]
- \hat{T} = temperature of the approach air [\bar{K} (°R)]

Figure D.1 provides the grade factor for (K_{ω}) in equation D.1.

FIGURE D.1 Grade Factor for Determining Critical Velocity.

Date: 2/14/2020 Job Number:

1

Sheet No.: 1 File Name:

PROJECT NAME: DART D2

\\seaw00\jobs2\61144\Redbook\08_TechProd\20%_Cncpt_Dsgn_Rpt\dart SES\[cr_vel_ for DART D

Value Value <th< th=""><th>Vehicle Tunnel Smoke Backlayering Calculat</th><th>ion</th><th>Tunnel Are</th><th>а</th><th></th><th></th><th></th><th></th></th<>	Vehicle Tunnel Smoke Backlayering Calculat	ion	Tunnel Are	а					
Citical Valcoty Constant 0.660 11 none Cade Factor 1.0 K2 none Acceleration of Gravity 32.2 g 10 (sec*2) Heigh of the tunnel 109 H f Fire Energy Load 13941 Q Btu/sec 949 14.89 MW Specific heat of air 0.224 Cp Btu/sec 949 16.80 MW Density of air 0.373 rh 120 T1 R Assaudity (bF) Density of air 0.073 rh 1b (l(1'3)) Form engineering loobbox Iteration constant 2 FPS R Herative Solution T 200 43 407576 972.037 Form engineering loobbox 1021 999 6759403 949.5620 9853 532 69171 404.1984 Form engineering loobbox 1021 999 6759403 949.5620 9853 533 6392.266 9853 539 982.266 983 246 983 5026 9853 533 6392.267 983 749 983 646 983 939 983 246 983 6026 9853 5393 6392.277 983 6174 983 626 983 283 983 246 983 6016 985227 983 6144 983 6124 983 6144	Description	Value	Variable	Units					
Grade Factor 1.0 K2 none Acceleration of Gravity 3.2 g ft (sec '2) Height of the tunnel 1.8 H ft Fire Energy Load 1.3 V4 C Btu/(bF) Specific heat of air 0.24 Cp Btu/(bF) Preproducial area of tunnel 2.8 A ft '2 Initial guess Average temp of fire site gases 1200 Tf R Verage Temperatule of approach air 0.033 Sin 0 bt((ft's)) 459 80.33 DEG F from CFD model (300K) Verage Temperatule of approach air 0.0735 fno bt((ft's)) 108 672.037 Verage Temperatule of approach air 0.0735 fno bt((ft's)) 108 672.049 Verage Temperatule of approach air 0.0735 fno ftr '1 R 108 Verage Temperatule of approach air 0.0735 fno ftr '1 97.037 102 Verage Temperatule of approach air 0.0755 ftr '1 97.039 108 97.039 T 0.0552 985.079 98.049 98.049 98.049 939.052 985.079	Critical Velocity Constant	0.606	K1	none					
Acceleration of Gravity	Grade Factor	1.0	K2	none					
Height of the tunnel 16 H ft Fire Energy Load 13941 Q But/Ber 949 14.69 MW Specific heat of air 0.24 Cp But/Ber 80.33 DEG F from CFD model (300K) Prependicular area of tunnel 2.86 A 1200 T1 R 459 80.33 DEG F from CFD model (300K) Prependicular area of tunnel 2.86 A 1200 T1 R 459 80.33 DEG F from CFD model (300K) Premary of air 0.0735 mo 10/(175) 459 80.33 DEG F from CFD model (300K) Iteration constant T 2 C Tr 1006 647 f6 624049 957 951 1021 99 6759493 984 945 5629 965 329 965 329 965 329 965 329 965 329 965 329 965 329 965 329 965 329 965 329 985 829 985	Acceleration of Gravity	32.2	g	ft/(sec^2)					
Fire Energy Load 13941 O Blu/gec 949 14.68 MW Perpendicular area of lumel	Height of the tunnel	16	Н	ft					
Specific frait of air 0.24 Cp EUU(0F) Prepriodicular area of furned 288 A 1200 Tf R Average Temperature of approach air 0.333 3T1 459 80.33 DEG F from CFD model (300K) Verage Temperature of approach air 0.0738 rho bt/((1*3)) 459 80.33 DEG F from engineering toolbox Iteration constant 2 Tit Vo Tit 100 6 4/0576 972.0337 1086 A074 652494 957.951 1021 894 657.951 1021 894 657.951 1021 899 6 /26198 957.051 1021 894 67.9639 944.8633 965.2221 6.96398 944.8633 965.2221 6.96398 943.277 946.8616 944.9633 943.277 946.8616 944.9633 943.276 943.0076 934.2061 934.277 946.8616 934.6633 939.2266 941.0031 938.270 938.270 938.270 938.270 938.270 938.270 938.270 938.270 938.270 938.270 938.271 938.262 935.204 938.271 938.2046 <td>Fire Energy Load</td> <td>13941</td> <td>Q</td> <td>Btu/sec</td> <td></td> <td>949</td> <td>14.69 MW</td> <td></td>	Fire Energy Load	13941	Q	Btu/sec		949	14.69 MW		
Perpenduction 120 Till Till Average Temperature of approach air 0.0733 fm R 459 80.33 DEG F from CFD model (300K) Density of air 2 Units R FPS R From engineering toolbox Iteration constant 2 Units R FPS R From engineering toolbox 100 6.40756 6.224046 957.551 1021.1996 6.764936 944.6533 965.7200 6.40119 944.6533 939.2221 6.893936 943.6529 965.7200 6.40119 944.4633 939.2226 943.0221 6.9939.9226 943.6615 6.93359 938.2469 938.468 6.94419 938.449 938.449 938.652 9.95247 938.1471 938.2469 938.0124 938.0124 938.0124 938.0124 938.0124 938.0124 938.0124 938.0124 938.0124 938.0146 938.0124 938.0144 938.0146 938.0124 938.0144 938.0146 938.0124 938.0144 938.0146 938.0124 938.0146 938.0146 938.0146 938.0145 938.0146	Specific heat of air	0.24	Ср	Btu/(ID^F)					
Threads Terminologies for the second	Initial quess Average temp of fire site gases	1200	A Tf	R					
Density of air 0.0735 rb bb ((ft'3) From engineering toolbox Iteration constant 2 FPS R Iterative Solution T Vo Tft 1200 6 407.576 972.0937 1086.603 996.75943 965 7500 6.8407.467 620.049 957.051 1086.603 965 2221 6.893322 941.8286 953.5253 6.91741 940.11977 946 6544 633.838.2020 943.0621 6.942473 938.071 938.6388 938.2020 943 0621 6.9446 9441.49 938.2409 938.322.69 943.0021 938.328 948.206 938 5489 6.95579 938.0001 938.322.69 938.0117 938.448 938.0246 938.0246 938.0246 938.0246 938.0246 938.0246 938.0246 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 938.0146 </td <td>Average Temperature of approach air</td> <td>539.33</td> <td>Ti</td> <td>R</td> <td></td> <td>459</td> <td>80.33 DEG F</td> <td>from CFD model (300K)</td>	Average Temperature of approach air	539.33	Ti	R		459	80.33 DEG F	from CFD model (300K)	
teration constant $\frac{2}{PFS}$ R Herative Solution T Vc TTit 1006 6047 5075 072.0037 1006 6047 5075 072.0037 1006 6047 5092.0037 1006 6047 5092.0037 1006 6047 5092.0037 1006 6047 5092.0037 905 5202 6.841199 944.6633 $905 52221 6.88938 2941 8206905 5222 6.95128 933.2226905 5202 6.95128 933.2269938.952 6.952297 533.1471938.952 6.952297 533.0172938.1888 6.95624 6.933.001938.1888 6.95624 6.933.001938.1888 6.95624 6.933.001938.0226 6.95228 7.933.0172938.0246 6.95528 7.938.0172938.0246 6.95528 7.938.0172938.0246 6.95529 7.938.0172938.016 6.95529 7.938.0152938.016 6.95529 7.938.0152938.016 6.95529 7.938.0146938.0$	Density of air	0.0735	rho	lb/(ft^3)				From engineering toolbox	
Instruction double and the product of the product	Itoration constant	2							
Iterative Solution T VC Tit T T VC Tit 1006 647 6.759433 949.5629 985.7009 6.841199 944.6633 985.7009 6.841198 944.6633 985.7009 6.841198 983.2266 933.6253 6.92271 6.83836 393.2266 943.0621 6.92287 938.7275 946.6615 6.933.8268 938.7266 943.0621 6.92287 938.1421 938.8526 6.95527 938.0141 938.9526 6.955271 938.017 938.9526 6.955212 938.019 938.0126 6.955271 938.019 938.0126 6.955271 938.0146 938.0126 6.955271 938.0146 938.0126 6.955271 938.0146 938.0126 6.955271 938.0146 938.0126 6.955271 938.0146 938.0126 6.955287 938.0146 938.0126 6.955281 938.0146 938.0126 6.955281 938.0146	Units	R	FPS	R					
T Vc Tit 12006 6.407576 972.0937 1086.047 6.624049 957.951 1021.999 6.759493 944.6633 965.7221 6.839322 914.8286 935.3253 6.91741 940.1977 946.8615 6.933282 939.2226 943.9448 6.941199 938.4216 933.9525 6.952277 938.1276 940.9448 6.945128 938.2469 938.9525 6.95271 938.0901 938.322 6.955212 938.0191 938.8188 6.955212 938.0191 938.0126 6.955212 938.019 938.0126 6.955212 938.019 938.0126 6.955212 938.019 938.0126 6.955212 938.019 938.0126 6.955212 938.0149 938.0126 6.955219 938.0149 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0146 6.955219		Iterative So	olution						
1200 6.407576 972.0937 1060.407 6.574043 957.951 1021.999 6.754433 949.5629 985.5720 6.803328 319.2626 945.8521 6.803382 319.2626 943.0621 6.942873 330.7275 940.0846 6.944144 334.2216 939.6525 6.95297 938.1471 938.8525 6.95297 938.1471 938.8526 955128 938.0576 938.139 6.955712 938.0246 938.0426 6.955212 938.0159 938.0466 6.955279 938.0146 938.0466 6.955279 938.0146 938.012 6.955212 938.0146 938.0126 6.955212 938.0146 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0126 6.955219 938.0146 938.0126		Tf	Vc	Tfit					
1086.047 6.624049 957.951 1021.996 6.75943 946.6523 965.7200 6.84119 904.6633 953.8223 6.91741 904.01977 946.8615 6.933583 333.2626 943.0621 6.942273 933.7275 940.0844 6.942197 933.6262 933.6525 6.95297 933.0401 933.825 6.95297 933.001 933.825 6.95247 933.0147 933.826 6.955461 933.024 933.0236 6.955212 938.0159 933.0136 6.955287 938.0149 933.015 6.955287 938.0149 938.015 6.955287 938.0149 938.015 6.955287 938.0144 938.015 6.955287 938.0144 938.015 6.955287 938.0144 938.015 6.955287 938.0144 938.0146 6.955287 938.0144 938.015 6.955287 938.0144 938.0146 6.955287 938.0144 938.015 6.955297		1200	6.407576	972.0937					
1021.1999 6.759433 349.5629 965.7203 6.841199 944.6633 965.3223 6.91741 940.1977 948.6815 6.93383 393.6266 943.0621 6.942873 393.7275 940.8446 6.948194 938.4216 933.6526 6.95297 933.011 933.8126 6.95297 933.021 933.826 6.95529 933.0141 933.8136 6.95548 938.0256 933.012 6.95527 938.0265 933.024 6.95527 938.0265 938.012 6.95527 938.0146 938.012 6.95527 938.0152 938.015 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 938.0146 938.016 6.95529 <td< td=""><td></td><td>1086.047</td><td>6.624049</td><td>957.951</td><td></td><td></td><td></td><td></td></td<>		1086.047	6.624049	957.951					
986.7809 6.841199 944.633 965.221 6.89325 941.8226 943.621 6.942873 938.725 944.8615 6.943383 393.2626 943.0621 6.942873 938.2469 938.6622 6.95123 6.94114 398.4216 938.6622 6.95123 938.001 938.349 938.171 938.349 0.93397 938.001 938.322 6.96481 938.024 0.95397 938.0171 6.95512 938.0171 0.95162 938.024 6.95512 938.0171 0.95162 938.024 938.0166 6.955217 938.0146 0.95228 938.0146 938.015 6.955287 938.0144 459 479.01 DEG F Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 938.015 6.955287 938.0144 459 479.01 DEG F Velocity for smoke backlayering 417.32 FPM TOTAL REQUIRED SMOKE EVACUATION FLOW 278771 <td colspan="</td> <td></td> <td>1021.999</td> <td>6.759493</td> <td>949.5629</td> <td></td> <td></td> <td></td> <td></td>		1021.999	6.759493	949.5629					
9905.2221 0.689302 941.0290 9963.5253 6.91741 940.1977 9964.8815 6.932838 933.2266 943.0821 6.942873 938.2469 936.8525 6.95238 938.2469 938.9525 6.952387 938.0216 938.9525 6.952397 938.0411 938.525 6.952377 938.0421 938.139 6.954383 938.0255 938.139 6.954548 938.0121 938.139 6.955267 938.0129 938.0246 6.955277 938.0146 938.0126 6.955277 938.0145 938.0126 6.955277 938.0146 938.0126 6.955277 938.0146 938.0146 6.955291 938.0146 938.0146 6.955291 938.0146 938.0146 6.955291 938.0146 938.0146 6.955291 938.0146 938.0146 6.955291 938.0146 938.0146 6.955291 938.0146 938.0146 6.955291 938.0146 938.0146		985.7809	6.841199	944.6633					
9933.8230 0.933883 0.92626 9943.80621 6.94273 938.7275 9940.8048 6.948149 938.2469 938.9256 6.95277 938.0901 938.926 6.95297 938.0411 938.926 6.95297 938.0411 938.926 6.95297 938.049 938.926 6.95297 938.0301 938.141 938.0468 6.954861 938.024 938.0417 6.955212 938.0149 938.0428 6.955277 938.0149 938.0429 6.955266 938.0149 938.0429 6.955261 938.0149 938.0126 6.955291 938.0149 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0145 938.0147 6.955291 938.0144 459		900.2221	6 01741	941.8280					
Welcocity for smoke backlayering 417.32 FPM Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118.935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 5.963082 Totage for splits to each fan plant 118.935 CFM Totage for smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system 5.963082 Fire Site Temperature Expansion Factor 3<		903.0203	6 033583	940.1977					
940.9948 6.948194 938.4216 939.6522 6.952277 938.076 938.1139 6.955212 938.076 938.1139 6.955212 938.026 938.0126 6.955212 938.026 938.0204 6.955212 938.026 938.0204 6.955215 938.012 938.0204 6.95526 938.015 938.0204 6.955267 938.015 938.0176 6.955287 938.0146 938.0166 6.955297 938.0146 938.0166 6.955297 938.0146 938.0176 6.95529 938.0146 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0145 938.0146 6.955291 938.0145 938.0147 6.955291 938.0145 938.0146 6.955291 938.0145 938.0147 6.95529 938.0145 938.0146 6.95529 938.0145 938.0157 5		943 0621	6 942873	938 7275					
938 6582 6.951238 938.2469 938 9525 6.952977 938.1471 938.322 6.954538 938.0901 938.32 6.954538 938.0301 938.1139 6.95504 938.0285 938.011 6.95512 938.0124 938.022 6.95524 938.017 938.022 6.95528 938.0176 938.017 6.95529 938.0146 938.0176 6.95529 938.0146 938.0176 6.95529 938.0146 938.0176 6.95529 938.0146 938.0176 6.95529 938.0146 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0147 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0147 18.935		940.8948	6.948194	938.4216					
938.9525 6.952977 938.1471 938.5498 6.95397 938.0901 938.328 6.954861 938.0301 938.188 6.954861 938.0301 938.0712 6.955152 938.072 938.0712 6.955212 938.017 938.0720 6.955245 938.017 938.0720 6.955246 938.0159 938.0786 6.955276 938.0146 938.0786 6.955277 938.0149 938.0178 6.955289 938.0149 938.0176 6.955299 938.0144 938.0176 6.955299 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 459 479.01 DEG F 118.935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture coo		939.6582	6.951238	938.2469					
938.5488 6.95347 938.0001 938.128 6.95458 938.0376 938.1139 6.955461 938.0285 938.112 6.955246 938.0285 938.029 6.955246 938.019 938.024 6.955266 938.019 938.029 6.955277 938.0159 938.024 6.955266 938.0159 938.0136 6.955286 938.0146 938.0136 6.955287 938.0145 938.0146 6.955291 938.0145 938.0147 6.955291 938.0145 938.0146 6.955291 938.0145 938.0147 6.955291 938.0145 938.0146 6.955291 938.0145 938.0146 6.955291 938.0145 938.0147 6.955291 938.0145 938.0148 6.955291 938.0145 938.0148 6.955291 938.0145 938.0147 6.955291 938.0145 938.0148 6.955291 938.0145 938.0147 6.955291 938.0146 938.0148 <td< td=""><td></td><td>938.9525</td><td>6.952977</td><td>938.1471</td><td></td><td></td><td></td><td></td></td<>		938.9525	6.952977	938.1471					
933.32 6.954538 933.0576 938.188 6.955046 938.0285 938.1139 6.955046 938.0285 938.0229 6.95512 938.019 938.0249 6.955266 938.015 938.0178 6.955287 938.0152 938.0178 6.955287 938.0146 938.0178 6.955289 938.0146 938.0146 6.95529 938.0144 938.0147 6.955281 938.0144 938.0146 6.95529 938.0144 938.0147 6.955281 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.015 6.955291 938.0144 938.015 6.955291 938.0144 938.015 6.955291 938.0144 938.015 938.0147 6.955291 938.0147 6.955291 938.0144 938.015 118.935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant<		938.5498	6.95397	938.0901					
938.1888 6.954861 938.0391 938.1139 6.95546 938.0191 938.0139 6.955212 938.017 938.029 6.955264 938.017 938.029 6.955264 938.017 938.0178 6.955269 938.017 938.0178 6.955283 938.0149 938.0136 6.955287 938.0146 938.0156 6.95529 938.0146 938.0147 6.95529 938.0145 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0146 6.95529 938.0144 938.0147 6.95529 938.0144 938.0146 6.95529 938.0144 459 470.01 DEG F 118,935 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082		938.32	6.954538	938.0576					
938.1139 6.955046 938.0245 938.0126 95512 938.0224 938.029 6.955212 938.017 938.029 6.955266 938.0159 938.0204 6.955287 938.0149 938.0178 6.955287 938.0149 938.0185 6.955287 938.0146 938.0185 6.955287 938.0146 938.0147 6.955291 938.0146 938.0147 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0148 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 118.935 118.935 Considering Fire Site		938.1888	6.954861	938.0391					
938.0712 6.955122 938.019 938.0229 6.955246 938.019 938.0249 6.955266 938.015 938.0246 6.955287 938.0152 938.0178 6.955289 938.0146 938.0175 6.955289 938.0146 938.0155 6.955291 938.0145 938.0156 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0145 938.0145 6.955291 938.0146 6.955291 938.0144 459 410.935 CFM 118,935 118,935		938.1139	6.955046	938.0285					
938.0446 6.9532/1 938.017 938.0296 6.955266 938.017 938.0296 6.955267 938.0159 938.0178 6.955287 938.0149 938.0163 6.955287 938.0149 938.0163 6.955287 938.0149 938.0163 6.955287 938.0144 938.0163 6.955291 938.0145 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 118.935 118.935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 366806.5		938.0712	6.955152	938.0224					
393.0249 6.955266 938.0159 938.0249 6.955227 938.0159 938.0124 6.955227 938.0146 938.0135 6.955227 938.0146 938.0135 6.955229 938.0146 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 6.955291 938.0144 938.0147 118.935 118.935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke i		938.0468	0.900212	938.019					
938.0204 6.955277 938.0152 938.0178 6.955283 938.0149 938.0178 6.955287 938.0146 938.0136 6.955287 938.0146 938.015 6.955297 938.0145 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 459 479.01 DEG F 118,935 CFM CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 <td c<="" td=""><td></td><td>930.0329</td><td>6 955266</td><td>930.017</td><td></td><td></td><td></td><td></td></td>	<td></td> <td>930.0329</td> <td>6 955266</td> <td>930.017</td> <td></td> <td></td> <td></td> <td></td>		930.0329	6 955266	930.017				
938.0178 6.955283 938.0149 938.0163 6.955289 938.0146 938.0155 6.955289 938.0145 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0146 6.955291 938.0144 938.0147 6.955291 938.0144 938.015 6.955291 938.0144 459 417.32 FPM 118,935 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system 5.963082 Fire Site Temperature Expansion Factor 3 356806.5		938 0204	6 955277	938 0152					
938.0163 6.955287 938.0146 938.0155 6.955289 938.0145 938.015 6.95529 938.0144 938.0146 6.95529 1 938.0144 459 479.01 DEG F Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5		938.0178	6.955283	938.0149					
938.01556.955289938.0145938.01476.955291938.0144938.01466.955291938.0144938.01466.955291938.0144938.01466.955291938.0144459479.01 DEG F		938.0163	6.955287	938.0146					
938.015 6.95529 938.0145 938.0147 6.955291 938.0144 459 479.01 DEG F Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5		938.0155	6.955289	938.0145					
938.0147 6.955291 938.0144 459 479.01 DEG F Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5		938.015	6.95529	938.0145					
938.0146 6.955291 938.0144 459 479.01 DEG F Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3		938.0147	6.955291	938.0144					
Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system 5.96806.5		938.0146	6.955291	938.0144		459	479.01 DEG F		
Velocity for smoke backlayering 417.32 FPM REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SMOKE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5									
REQUIRED AIRFLOW DOWN TUNNEL TO PREVENT SINCE BACKLAYERING 118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective reture of substances su	Velocity for smoke backlayering		417.32	FPM					
118,935 CFM TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Evant 5.963082 Assume duct smoke cooling and air mixture cools et temperature of smokement 5.963082 Fire Site Temperature Expansion Factor 3 36806.5	REQUIRED AIRFLOW DOWN TUNNEL TO I	PREVENT S	SMOKE BA	CKLAYERIN	NG				
TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5			118.935	CFM					
TOTAL REQUIRED SMOKE EVACUATION FLOW 237871 Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5									
237871Flow splits to each fan plant118,935Considering Fire Site Temperatures Flow Capacity Expansion5.963082Assume duct smoke cooling and air mixture cools effective temperature of smokeinterviewFire Site Temperature Expansion Factor3356806.5	TOTAL REQUIRED SMOKE EVACUATION F	-LOW							
Flow splits to each fan plant 118,935 Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5			237871						
Considering Fire Site Temperatures Flow Capacity Expansion 5.963082 Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5	Flow splits to each fan plant		118,935						
Assume duct smoke cooling and air mixture cools effective temperature of smoke inlet into ventilation system Fire Site Temperature Expansion Factor 3 356806.5	Considering Fire Site Temperatures Flow Cap	pacity Expai	nsion		5.963	3082			
Fire Site Temperature Expansion Factor 3 356806.5	Assume duct smoke cooling and air mixture of	cools effectiv	/e temperat	ure of smok	ke inle	t into ve	ntilation system		
	Fire Site Temperature Expansion Factor	3			3568	06.5			

$$\begin{split} V_{c} &= K_{1}K_{g} \left(\frac{gHQ}{\rho C_{p}AT_{f}} \right)^{1/3} \\ T_{f} &= \left(\frac{Q}{\rho C_{p}AV_{c}} \right) + T \end{split} \tag{D}. \end{split}$$

1)

where:

- V_c = critical velocity [m/sec (fpm)]
- $K_1 = 0.606$ (Froude number factor, Fr^{-1/3})
- K_{g} = grade factor (see Figure D.1)
- g = acceleration caused by gravity [m/sec² (ft/sec²)]H = height of duct or tunnel at the fire site [m (ft)]
- Q = heat fire is adding directly to air at the fire site [MW (Btu/sec)]
- ρ = average density of the approach (upstream) air $[kg/m^{3} (lb/ft^{3})]$
- C_p = specific heat of air [kJ/kg K (Btu/lb°R)]
- \dot{A} = area perpendicular to the flow [m² (ft²)]
- T_f = average temperature of the fire site gases [K (°R)]
- \hat{T} = temperature of the approach air [\bar{K} (°R)]

Figure D.1 provides the grade factor for (K_{ω}) in equation D.1.

FIGURE D.1 Grade Factor for Determining Critical Velocity.

Pass Fail Criteria

Case No	Tunnel Configuration	Height of Tunnel	Tunnel Cross Sectional Area	Fire load	Critical Vel. [1]	Critical Vel. + 10% F.S. [2]	Critical Airflow	Notes
		(ft)	(sq. Ft)	(MW)	(fpm)	(fpm)	(kcfm)	
1	Tunnel track	16	285	14.9	417	459	131	1
2	Station Track	16	230	14.9	437	481	111	1
1	Tunnel track	16	175	14.9	417	459	80	5
2	Station Track	16	120	14.9	437	481	58	5

Notes:

[1] Critical velocity for full area is used

[2] Added 10% factor of safety per BFS Criteria - Mechanical Line Sections, page 12 of 18

[3] Fourde number used for critical velocity calculation is 0.85 per interpolation based on a fire load of 15 MW.

[4] Fourde number used for critical velocity calculation is 0.606 per interpolation based on a fire load of 15 MW.

[5] Annular area = tunnel area minus train area