Bus Corridor Improvement Program
Phase 1 Summary Report

NOVEMBER 2023

PREPARED BY GPC7
Prepared for Dallas Area Rapid Transit
General Planning Consultant Managed by HDR, Inc.
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Local and Regional Benefits</td>
<td>1</td>
</tr>
<tr>
<td>1.2 DART Transit System Plan and Strategic Plan</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Phased Approach</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Report Organization</td>
<td>5</td>
</tr>
<tr>
<td>2 Approach and Methodology</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Best Practices Toolbox</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Evaluation Methodology</td>
<td>7</td>
</tr>
<tr>
<td>2.3 External Stakeholder Engagement</td>
<td>13</td>
</tr>
<tr>
<td>3 Corridor Assessment and Findings</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Corridor Level Evaluation</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Segment-Level Evaluation</td>
<td>17</td>
</tr>
<tr>
<td>3.3 Toolbox Recommendations</td>
<td>21</td>
</tr>
<tr>
<td>3.4 System Level Observations and Recommendations</td>
<td>21</td>
</tr>
<tr>
<td>4 Summary and Next Steps</td>
<td>27</td>
</tr>
<tr>
<td>4.1 Policy and Program Development</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Implementation Strategy and Key Considerations</td>
<td>27</td>
</tr>
<tr>
<td>4.3 Monitoring and Progress Reporting</td>
<td>30</td>
</tr>
</tbody>
</table>
Appendices

APPENDIX A: Best Practices Toolbox................................................................. A
APPENDIX B: Route Heat Maps........................................................................ B
APPENDIX C: Front Line Staff Input................................................................. C
APPENDIX D: Route Evaluation and Toolbox Recommendation Summaries........ D

Figures

Figure 1-1: CORE Program Goals ...................................................................... 1
Figure 1-2: 2045 Transit System Plan Service & Expansion Goal 3...................... 2
Figure 1-3: CORE Phased Approach................................................................. 3
Figure 1-4: DART System Map.......................................................................... 5
Figure 2-1: CORE Toolbox Categories........................................................... 7
Figure 2-2: Phase 1 Evaluation Process........................................................ 7
Figure 3-1: Segment-Level Evaluation Results Map ......................................... 20
Figure 3-2a: Route Overview/Profile Example (Route 22 – Forest Lane) ............. 22
Figure 3-2b: Route and Segment Evaluation Summary Example (Route 22 – Forest Lane) .......... 23
Figure 3-2c: Toolbox Recommendations Example (Route 22 – Forest Lane) ........ 24

Tables

Table 1-1: Study Corridors.................................................................................. 4
Table 2-1: Evaluation Criteria........................................................................... 9
Table 3-1: Route Summary Scores ................................................................. 16
Table 3-2: Top 20 Segments Outside of CBD.................................................. 18
1 Introduction

DART bus service is a key component of the local and regional mobility network, linking residents to jobs, medical services, shopping, and education opportunities. It has the potential to play a larger role in supporting the mobility, land use, and economic objectives of DART Service Area cities. To fully realize the benefits of bus-based mobility, there is a need to invest in streets to enhance the role of transit and move buses and people more effectively.

To address this need, DART has developed a bus corridor improvement program, referred to as CORE (Corridor Optimization + Rider Experience). The CORE program provides the framework for collaboration with DART Service Area cities to promote transit priority within key bus corridors, enhance operational efficiency, and improve customer experience. DART provides three levels of bus service: Express, Shuttle, and Local, all of which are supplemented by GoLink microtransit. This report discusses the potential capital improvements along Local bus route corridors, with an initial focus on the most frequent 21 routes established in the DARTZoom bus network redesign effort.

Goals of the CORE program are highlighted in Figure 1-1:

Figure 1-1: CORE Program Goals

1.1 Local and Regional Benefits

By aligning DART and Service Area cities’ goals and objectives for mobility to emphasize speed and reliability as a priority, CORE provides a responsive approach to enhancing bus service. Through the advancement of the CORE program and projects, DART and service area cities can make a real difference in the lives of DART riders, enhance communities, and address regional growth by:

- Enhancing the attractiveness and competitiveness of public transit as a mode of transportation, which can encourage more people to use it instead of driving alone.
- Reducing vehicle miles traveled (VMT) and greenhouse gas emissions by shifting trips from private cars to buses, which have lower per capita environmental impacts.
- Improving mobility and accessibility for all, but with an emphasis on transit-dependent individuals who rely on buses for their daily needs.
• Supporting economic development and social equity by connecting people to jobs, education, health care, and other opportunities across the region.

1.2 DART Transit System Plan and Strategic Plan
DART’s 2045 Transit System Plan (TSP) was adopted by the DART Board of Directors in January 2022. The 2045 TSP looks beyond day-to-day operations and focuses on opportunities that leverage the already extensive transit system through strategic improvements and investments to create a more accessible, sustainable, and resilient system. Plan opportunities are built around five key themes with associated goals and actions:

1. **Rider Experience** – Focus on access, safety/security, customer information, and system enhancements to improve rider experience.
2. **Mobility and Innovation** – Advance mobility through innovation, technology, and customer initiatives.
3. **Service and Expansion** – Target service improvements and system expansion to support an equitable and sustainable network.
4. **Land Use and Economic Development** – Integrate land use and transit planning to grow ridership and create transit-oriented development (TOD).
5. **Collaboration** – Collaborate with public and private partners on transit supportive programs, policies, and projects.

The CORE program touches on each of these five themes, but the advancement of the CORE program is specifically related to Service and Expansion Goal 3 as shown below in Figure 1-2.

**Figure 1-2: 2045 Transit System Plan Service & Expansion Goal 3**

DART is also in the process of developing a new Strategic Plan to guide priorities over the next 5 to 10 years. Two goals focused on the customer include Quality and Seamless. The CORE program is integral to advancing these goals by promoting quality service, improving reliability, and enhancing the total journey experience for customers.

1.3 Phased Approach
The CORE program is built around three primary phases illustrated in Figure 1-3. This report documents Phase 1. Within this initial phase, DART defined the CORE program goals, gathered, and documented best practices, determined methodology and criteria, and completed the initial phase of evaluation. Guidance
regarding the implementation approach, including monitoring performance and assessing outcomes is also discussed.

Figure 1-3: CORE Phased Approach

CORE Phase 1 focuses on DART’s 21 most frequent Local service routes established in January 2022 through the DARTZoom Bus Network Redesign effort. Table 1-1 lists the 21 routes that were analyzed as part of Phase 1, noting route length and weekday service frequency. These 21 routes are illustrated on Figure 1-4 as the gold local routes with midday frequency of 15-20 minutes. The project team employed a data-driven approach to complete the corridor assessment, while sharing information, goals, and best practices with technical staff of DART Service Area cities. The process also included input from DART bus operators, Service Planning and Technology staff, benefiting from first-hand knowledge of operating conditions along bus routes. While only 21 routes were evaluated as part of Phase 1, the process can be applied to all Local routes across the service area.
Table 1-1: Study Corridors

<table>
<thead>
<tr>
<th>Route No.</th>
<th>Route Name</th>
<th>Route Length (Miles)</th>
<th>Weekday Service Frequency (Peak/Midday/Off Peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malcolm X-Maple</td>
<td>8.7</td>
<td>15/15/30</td>
</tr>
<tr>
<td>3</td>
<td>Ross</td>
<td>6.5</td>
<td>15/15/30</td>
</tr>
<tr>
<td>5</td>
<td>Love Field Shuttle</td>
<td>2.1</td>
<td>15/15/30</td>
</tr>
<tr>
<td>9</td>
<td>Jefferson-Gaston</td>
<td>12.2</td>
<td>15/15/30</td>
</tr>
<tr>
<td>13</td>
<td>Ervay</td>
<td>8.7</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>15</td>
<td>Buckner</td>
<td>12.4</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>16</td>
<td>Ferguson</td>
<td>14.0</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>17</td>
<td>Skillman</td>
<td>14.6</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>18</td>
<td>Samuell</td>
<td>17.0</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>20</td>
<td>Northwest Highway</td>
<td>17.0</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>22</td>
<td>Forest Lane</td>
<td>15.4</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>23</td>
<td>Haskell</td>
<td>7.1</td>
<td>15/20/20</td>
</tr>
<tr>
<td>25</td>
<td>Cockrell Hill North</td>
<td>11.0</td>
<td>15/20/30</td>
</tr>
<tr>
<td>27</td>
<td>Ridgecrest</td>
<td>5.2</td>
<td>15/20/30</td>
</tr>
<tr>
<td>28</td>
<td>Singleton</td>
<td>8.2</td>
<td>15/20/30</td>
</tr>
<tr>
<td>30</td>
<td>Lake June</td>
<td>5.3</td>
<td>15/20/30</td>
</tr>
<tr>
<td>38</td>
<td>Ledbetter</td>
<td>15.4</td>
<td>15/20/20-30</td>
</tr>
<tr>
<td>41</td>
<td>Bonnie View</td>
<td>9.9</td>
<td>15/20/30</td>
</tr>
<tr>
<td>45</td>
<td>Marsalis</td>
<td>13.1</td>
<td>15/20/30</td>
</tr>
<tr>
<td>47</td>
<td>Polk</td>
<td>15.1</td>
<td>15/20/30</td>
</tr>
<tr>
<td>57</td>
<td>Westmoreland</td>
<td>17.5</td>
<td>15/20/20-30</td>
</tr>
</tbody>
</table>

Note: Route length represents one direction, not a round trip.
1.4 Report Organization

This summary report is organized into three chapters following this introduction. Chapter 2 documents the evaluation approach and methodology, including the best practices toolbox, criteria, data sources, and stakeholder input. Chapter 3 presents the corridor assessment findings and recommendations. The assessment is presented in a series of Route Assessment Profile maps. These route profiles provide an overview of the route, an evaluation of each route segment by direction, and illustrate opportunities for CORE toolbox applications along the route based on the evaluation.

Chapter 4 discusses next steps for Phase 2, which will further advance priority recommendations. Implementation strategies are also discussed.
2 Approach and Methodology

As described in Chapter 1, the goals of the CORE program are to:

- Enhance Speed and Reliability
- Improve Operational Safety
- Improve Access and Connectivity

Advancing these goals can help elevate the role of DART bus services in mobility network, promote transit priority and consideration of bus in city street or development projects, grow ridership, and move more people more efficiently.

The study approach and methodology considered these goals along with industry best practices and is described in the following sections.

2.1 Best Practices Toolbox

The study approach started with a review of industry best practices to leverage the experiences and lessons learned of cities and transit agencies in other metropolitan areas that are leading the way in enhancing their bus transit systems. This review helped DART to understand and organize the range of tools and actions that can help achieve program goals. This industry scan found a range of approaches with strong collaboration between the transit agency and cities being the most essential common ingredient.

The project team reviewed the following systems:

- King County Metro / Seattle
- Regional Transit District (RTD) / Denver
- Tri-Met / Portland
- Pace Suburban Bus / Chicago
- New York Metropolitan Transportation Authority (NYMTA) / New York City
- Charlotte Area Transit System (CATS) / Charlotte
- TransLink / Vancouver, BC

Although these agencies are not similar in size, they are on the leading edge of bus speed and reliability initiatives within the transit industry. Reports, guidelines, and other documentation were reviewed for potential application to the CORE program, and informed the development of the Best Practices Toolbox found in Appendix A.

The DART CORE Program Best Practices Toolbox organizes the various bus corridor improvement tools and strategies into four major areas as shown in Figure 2-1. Within each category, specific treatments or tools are identified and rated based on their ability to achieve program goals. The toolbox also notes considerations related to estimated level of coordination, the cost range, and whether the treatment is more appropriate for a spot level improvement, or application along a route segment or corridor. Each tool is described in terms of its typical application, expected benefits, and potential challenges. Examples are also included. While the toolbox documents the predominant tools recommended for this effort, there may be variations or other situation-specific treatments needed at some locations.

The draft toolbox was reviewed with DART Service Area city technical staff and provided for their review. As CORE is implemented the toolbox may be refined or updated based on local experience.
2.2 Evaluation Methodology

The Phase 1 effort focused on two key evaluation objectives:

1. Generate a prioritized ranking of bus route corridors and segments based on need, and
2. Develop recommendations for tools along each corridor to address identified issues.

The first objective makes use of a comprehensive set of evaluation criteria to score segments within each corridor and develop a corridor-level summary rating. The second objective used supplemental data and feedback to develop recommendations for tools that could address, resolve, eliminate, or mitigate operational issues. Figure 2-2 illustrates the process, which is further described in the following sections.
2.2.1 Corridor and Segment Evaluation

With potentially hundreds of locations across the 21 bus routes that could benefit from CORE improvements, the task of scoring and ranking the different bus corridors and route segments was important to understand the level of need. The process included the development of criteria, data collection, and metrics to form the basis of the evaluation and scoring. Because this corridor assessment is a high-level analysis, more detailed work in Phase 2 is necessary to further define each potential project. This will need to be done in collaboration with city staff to determine constructability, challenges, and opportunities to combine bus corridor or access improvements with other planned city improvements – all of which may shift the order of implementation.

In this initial phase, each of the frequent service routes underwent an analysis using a set of criteria and metrics both at the full route level and at the segment level. Each route was split into segments to better understand locations of need and deficiency. Typically, these segments were defined at pre-existing time points established for DART’s bus schedules.

Based on the program goals, the criteria summarized in Table 2-1 were used for screening the routes and segments. A description of each of the criteria and associated metric(s) follows. The evaluation approach was set up such that higher scores indicate a greater need for CORE program investments.

Evaluation criteria were developed and weighted based on significance of impact and potential for highest level of benefit. Criteria given higher weights include criteria with the highest level of travel time delays impacting transit performance, and criteria with the highest degree of benefit (i.e., highest transit ridership and transit trip volume). The primary focus of each criterion is described below.

- **Transit Performance (50%)** – focused on areas that experience the greatest degree of delay and variability of travel time delays.
- **Transit Intensity & Ridership (30%)** – focused on impact significance or how many riders and bus trips (intensity) are impacted by travel delays.
- **Population & Employment Density (10%)** – focused on the significance or volume of community-based impacts resulting from travel delays (includes riders and non-riders).
- **Safety (5%)** – focused on areas with the highest number of injuries.
- **Equity / Ridership Profile (5%)** – focused on the degree in which disadvantaged communities are impacted by travel delays.
Table 2-1: Evaluation Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Metric</th>
<th>Scoring</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit performance (50%)</strong></td>
<td>25%</td>
<td>Bus Delay (ratio of weekday avg. bus speed to speed limit in segment)</td>
<td>Quintile Scoring Relative to Peers (Higher delay% = more points)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>Travel time variance - (10th percentile divided by 90th percentile) by Route</td>
<td>Quintile Scoring Relative to Peers (Higher variance = more points)</td>
<td>25</td>
</tr>
<tr>
<td><strong>Transit intensity &amp; ridership (30%)</strong></td>
<td>10%</td>
<td>Avg. Bus Volume/Hr. (weekday)</td>
<td>Quintile Scoring Relative to Peers; where higher volumes = more points</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>Average Daily Ridership (Boarding only) in segment</td>
<td>Quintile; where higher ridership = more points</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>Maximum Average Passenger Load in segment</td>
<td>Quintile; where higher load = more points</td>
<td>10</td>
</tr>
<tr>
<td><strong>Pop/Emp Density (10%)</strong></td>
<td>10%</td>
<td>Combined existing population and employment through NCTCOG traffic area zones (TAZ) w/in ¼ mile buffer of segment</td>
<td>Quintile scoring Relative to Peers (top quantile=10 to lowest quantile=0) (TAZ with the largest overlap)</td>
<td>10</td>
</tr>
<tr>
<td><strong>Safety (5%)</strong></td>
<td>5%</td>
<td>Segment Overlap Percentage on High Injury Network (HIN)</td>
<td>Segment overlap percentage x 5</td>
<td>5</td>
</tr>
<tr>
<td><strong>Equity/ Ridership Profile (5%)</strong></td>
<td>5%</td>
<td>Justice40 Census Tract Proximity</td>
<td>Segment fully in Justice40 tracts = 5, Partially in Justice40 tracts = 3, w/in ¼ mile of Justice40 tracts = 2, Beyond ¼ mile = 0</td>
<td>5</td>
</tr>
</tbody>
</table>

Summary Score 100%

A more detailed description of the criteria and metrics follows:

- **Transit Performance**: This criterion is scored based on a combination of two metrics. First, bus delay, which is at the heart of the CORE program, is measured by comparing average bus speeds relative to the speed limit within each segment. This provides an indication of the ability of the route to operate at similar speeds as automobile traffic. Second is travel time variance which can have major effects on DART’s route scheduling and route efficiency as a route with highly variable travel times will generally require additional layover and recovery time to provide ‘just in case’ time for the route to recover when trips are especially delayed. Using the CORE tools to reduce run time variability is a key to maximizing the benefit of such investments.

- **Transit Intensity and Ridership**: Three metrics comprise this criterion. Average bus volume is simply the number of buses passing through a route segment each hour (note this measure includes all routes using the segment). Average daily ridership is gathered from the bus stops along each segment and consists of average boardings to provide an indication of passenger activity originating within the segment. Third, to also factor in riders passing through the segment without boarding or alighting, the average passenger load or number of passengers on an average bus trip is factored into the scoring. (October 2022 data)

- **Population and Employment Density**: This criterion is used because the relative density of population and employment represents the potential transit market that may benefit from CORE projects that improve transit service quality. It is derived using 2023 traffic analysis zone (TAZ) data for those areas within ¼ mile of the segment.
• **Safety:** Many of the CORE tools in the Best Practices Toolbox can enhance safety for all users within a segment by improving the pedestrian environment, better separating bus movements from general traffic, and by facilitating a mode switch from automobile travel to safer modes such as public transportation. In this case, segments were scored higher based on the degree of overlap with roadway sections that are identified as having high incidences of crashes and injuries.

• **Equity and Ridership Profile:** To take into consideration those riders more likely to be reliant on public transportation and to better align with priorities of the Federal Transit Administration that can affect DART’s ability to secure federal grant funding, the fifth criterion accounts for equity considerations and ridership profiles by scoring the proximity of each route segment to Justice40\(^1\) Census Tracts.

Each of the corridors and corridor segments are evaluated relative to each other to develop a prioritized list that can help to inform which of the locations may show higher need for improvement. Each segment received a score for each of the metrics, which was aggregated into a total index score for the route or segment by normalizing the score for each segment by its length.

2.2.2 Supplemental Analysis and Feedback

The corridor and segment evaluation provided a high-level analysis of potential need and indicator of potential tools to apply within a segment. Another step in the evaluation process was to take the results of the corridor and segment evaluation and apply supplemental feedback and data review to identify and recommend the most appropriate CORE tools. This process made use of additional detailed operational data, bus operator input, field review, and study team discussions based on professional judgement. A description of these activities is summarized below.

Operational Data Assessment

Operational data and feedback focused on using DART Automatic Vehicle Location (AVL) data and getting bus operator feedback. AVL data is a highly detailed, granular dataset about each route that is used to develop Heat Maps and Speed Maps, both of which can help to isolate the causes for delay.

Heat Maps

With both time and location, average speeds across the entire network can be displayed on a heat map and offer a visual story of transit activity along each route across the entire service span. Appendix B contains two heat maps for each route, one for each direction of service. The data used for Phase 1 was for one month (February 2023).

Speed Map/DART Transit Clock

This in-house DART software application also makes use of real-time and historic AVL data, and can provide information pertaining to real-time vehicle location, schedule adherence/on-time performance and run times. For the purposes of this effort, speed maps were produced for a limited set of routes to spot check potential issues. Parameters such as day(s) of the week, time of day, speed, and more can be adjusted to provide meaningful data.

Bus Operator Feedback

Bus operators are most familiar with the operating environment throughout the day and can provide valuable insight into issues along routes. Through the DART Route Monitoring Task Force, one-on-one discussion, and on-site division surveys, operator and supervisor feedback provides a valuable cross-check for comparison with the data.

As preliminary findings were being developed, DART staff conducted on-site surveys at DART’s three bus operating divisions, including:

- South Oak Cliff (June 7, 2023)
- East Dallas (June 13, 2023)
- Northwest (June 14, 2023)

The surveys were designed to gather details regarding locations along frequent service routes where bus operators experience recurring delays, have safety issues or other concerns that could potentially be addressed by the CORE program. Approximately 80 comments were received through this process, a majority of which related to the frequent service routes in this study, and several related to other routes. Those relevant to this effort are included as Appendix C. A summary of key comments and issues is provided below:

- Delay-related issues made up 72% of the comments including issues related to traffic signals
(25%), bus stop locations (18%), and other issues such as construction, schedules, fare collections, and routing (29%).

- Safety-specific issues made up 4% of comments, mostly related to street maintenance (lane striping, potholes, landscape encroachment).
- Combined Delay/Safety related issues were 24%, largely split between roadway geometry issues or on-street parking constraints.

The two predominant delay issues mentioned by bus operators were at traffic stops and at bus stops. The most frequent issues at traffic stops were:

- **Stop Signs** - Most frequent routes operate on long stretches without turns. In a few instances, routes operate for a short stretch on minor roadways where stop signs force stops but where cross-traffic is not required to stop. This isn’t an issue in off-peak periods when cross-traffic is light but during peak periods cross-traffic leaves few gaps for buses to accelerate and safely complete a left-turn or continue ahead.

- **Unprotected left-turn signal**: At multiple locations, operators make left-turns at signalized intersections that don’t include a protected left-turn phase. In some instances, insufficient green time is available for queued left-turning vehicles to get through within a single signal cycle.

- **Insufficient green time on protected left-turn phase**: At a few locations where signalized intersections do include protected left-turn phases, there is insufficient green time for the left-turn signal phase for vehicles to get through the intersection within a single signal cycle.

For bus stop related delays, comments pertained primarily to the location of a bus stop too close to an intersection where a left-turn is required, creating challenges for operators to weave across other lanes to reach the left-turn lane. Operators also noted areas with an excessive number of bus stops within a short distance.

Other issues related to both delay and operational safety include roadway geometry and on-street parking. Right-turn movement constraints include instances where the intersection is less than 90 degrees for the turning movement, a tight corner radius, and narrow travel lanes. On-street parking, either parallel parking on narrow roadways or angle parking on major thoroughfares, can also impair smooth and efficient bus operations.

**Fieldwork and Team Review**

To augment the data-driven component of the CORE program, the project team also used a combination of field work and virtual field work using Google Earth to review each route in detail and develop recommendations regarding the application of bus speed and reliability and related transit improvements. This effort, conducted on a route and segment level, brought together the performance metrics and observations regarding right-of-way, land use, intersections, but stop locations and other parameters to develop specific recommendations for corridor, spot, and active transit zone locations (such as transit centers or rail stations) across the frequent route network.

The study team also held in person and virtual review meetings with other DART departments through the process, including Service Planning and Scheduling, Bus Operations, and Information Technology.
2.3 External Stakeholder Engagement

Service Area City Engagement

To build awareness of and support for the CORE program, DART introduced the initiative at a series of Service Area City staff meetings between March 15 and March 30, 2023. These meetings were pre-meetings for the subsequent Area Plan effort which included a tour and meeting at each City. The Area Plan development process will be important in working with cities to advance CORE improvements. DART also held a virtual “lunch and learn” session with Service Area city transportation and planning staff on May 9, 2023 to discuss the study approach, evaluation criteria and review the draft Best Practices Toolbox document.

Public Input

Customer input, gathered from DART’s numerous Mobility Plus Community Meetings during the months of March and April 2023, is another important consideration to inform Phase 1 and Phase 2 of this effort. Input varied from evaluation criteria to consider, issues along bus trips, and recommendations for bus-related roadway improvements and service adjustments. The CORE effort can also draw from the extensive public outreach effort completed for DART Zoom to identify CORE related issues and concerns for application.
3 Corridor Assessment and Findings

This chapter presents the results of the analysis using the methodology described in Chapter 2. Evaluation results are presented at the corridor and the segment level and represented in a series of maps for each route that document recommended toolbox strategies to address identified issues. Appendix D contains the Route Evaluation and Toolbox Recommendations summaries for each route.

The evaluation covered a total of 246 route segments across the 21 frequent Local routes described in Table 3-1. With eight metrics on each of these segments, that resulted in more than 2,000 data points overall. Given the complexity of this analysis, there are several ways to dissect the data to glean the most relevant findings. The following sections highlight key findings that can help guide DART in terms of prioritizing locations for Phase 2 of this study and advancing the process towards funding and implementation.

3.1 Corridor Level Evaluation

Table 3-1 presents the corridor level results and summary score for each route based on points for each of the eight metrics. As described in Chapter 2, the evaluation weighted transit performance along with transit intensity and ridership more heavily to identify those areas that would benefit most from speed and reliability improvements. Scores are also based on position relative to other peer routes.

The corridor level score serves as an indicator that the route would benefit from a comprehensive set of CORE treatments along most of or the entire corridor. This is especially true of longer routes where there is a greater potential for travel time savings for riders, as well as for segments where multiple routes operate. Those routes scoring in the top 10 and with a route length over 10 miles include:

- Route 20 Northwest Highway (17 miles)
- Route 9 Jefferson-Gaston (12.2 miles via downtown Dallas)
- Route 57 Westmoreland (17.5 miles)
- Route 38 Ledbetter (15.4 miles)
- Route 15 Buckner (12.4 miles)
- Route 16 Ferguson (14 miles; 4.5 miles via freeway)

Four of these routes (20, 57, 38, 15) generally form an inner loop within Dallas with three of them using the Loop 12 corridor. These routes not only provide crosstown service but also important connections to the radial light rail network, allowing passengers to continue trips to other points in the DART Service Area. Route 16 Ferguson provides a direct connection to downtown Dallas from the South Garland Transit Center and uses IH 30 for a limited stop section. Route 9, while more than 12 miles long, operates a short non-stop segment along Jefferson Viaduct and connects through downtown Dallas, effectively functioning as two shorter routes. Further analysis in Phase 2 will be done with recent on-board rider survey data to understand average trip length, major transfer activity, and key origin-destination pairs along the corridors.

Route 23 also scored high across all metrics. While this is a shorter route at 7.1 miles, it does not operate through downtown and provides a critical link to major employment and activity centers like UTSW Medical District (connecting to the Green/Orange lines), Oak Lawn, West Village (connecting the M-Line Trolley and Red/Orange/Blue lines at CityPlace/Uptown Station), Baylor Medical Center, and Fair Park (Green Line).
Other routes in the top 10 include Route 1 Malcolm X-Ross (8.7 miles), Route 5 Love Field Shuttle (2.1 miles), and Route 27 Ridgecrest (5.2 miles). The Love Field Shuttle had the highest score but is only two miles long with one segment in each direction. This shuttle has limited opportunities to enhance travel time given the short distance and would require close coordination with the Love Field Airport as about half of the route operates on airport property. Other opportunities to enhance the bus stops, signage and wayfinding are being explored to promote its use. Route 1 links areas of south Dallas to Baylor Medical Center, downtown Dallas, Uptown, Oak Lawn and UTSW Medical District. Route 27 largely serves as more of a meandering feeder route linking neighborhoods in northeast Dallas to the Walnut Hill and Park Lanes stations.

These three routes, along with others outside of the top 10 may be more suited to segment or spot level improvements. One exception not listed in the top 10 is Route 22 Forest Lane. This crosstown route is long at 15.4 miles, and connects Downtown Garland Station to Addison Transit Center, using a long stretch of Forest Lane for much of the route through a densely populated area. Future service improvements being considered for this corridor as part of the Bus Network Redesign Phase 2 include the addition of another route that would branch off near Medical City to continue west toward Irving. This would effectively double frequency along a section of Forest Lane, increasing the need for a corridor level investment.
Table 3-1: Route Summary Scores

<table>
<thead>
<tr>
<th>No.</th>
<th>Route</th>
<th>Metric</th>
<th>Transit Performance</th>
<th>Transit Intensity &amp; Ridership</th>
<th>Pop/Emp Density</th>
<th>Safety</th>
<th>Equity</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bus Delay</td>
<td>Travel Time Variance</td>
<td>Bus Volume</td>
<td>Daily Ridership</td>
<td>Passenger Load</td>
<td>Combined Density</td>
<td>High Injury Network</td>
</tr>
<tr>
<td></td>
<td>Points Possible</td>
<td>25</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Length (Miles)</td>
<td></td>
<td></td>
<td>Number of Segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Love Field Shuttle</td>
<td>2.1</td>
<td>2</td>
<td>15.5</td>
<td>21.7</td>
<td>4.6</td>
<td>3.6</td>
<td>4.0</td>
</tr>
<tr>
<td>23</td>
<td>Haskell</td>
<td>7.1</td>
<td>10</td>
<td>19.8</td>
<td>11.2</td>
<td>6.3</td>
<td>3.1</td>
<td>5.8</td>
</tr>
<tr>
<td>20</td>
<td>Northwest Highway</td>
<td>17.0</td>
<td>14</td>
<td>13.7</td>
<td>15.2</td>
<td>5.7</td>
<td>6.3</td>
<td>5.3</td>
</tr>
<tr>
<td>9</td>
<td>Jefferson-Gaston</td>
<td>12.2</td>
<td>12</td>
<td>13.5</td>
<td>8.7</td>
<td>7.4</td>
<td>5.9</td>
<td>8.1</td>
</tr>
<tr>
<td>57</td>
<td>Westmoreland</td>
<td>17.5</td>
<td>16</td>
<td>11.2</td>
<td>11.2</td>
<td>6.7</td>
<td>8.1</td>
<td>5.1</td>
</tr>
<tr>
<td>38</td>
<td>Ledbetter</td>
<td>15.4</td>
<td>14</td>
<td>11.7</td>
<td>14.1</td>
<td>7.6</td>
<td>5.1</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>Malcolm X-Maple</td>
<td>8.7</td>
<td>14</td>
<td>12.6</td>
<td>14.2</td>
<td>4.0</td>
<td>3.3</td>
<td>7.4</td>
</tr>
<tr>
<td>15</td>
<td>Buckner</td>
<td>12.4</td>
<td>12</td>
<td>11.2</td>
<td>12.7</td>
<td>5.9</td>
<td>6.3</td>
<td>4.9</td>
</tr>
<tr>
<td>16</td>
<td>Ferguson</td>
<td>14.0</td>
<td>14</td>
<td>8.3</td>
<td>15.3</td>
<td>5.0</td>
<td>7.7</td>
<td>3.7</td>
</tr>
<tr>
<td>27</td>
<td>Ridgecrest</td>
<td>5.2</td>
<td>6</td>
<td>14.1</td>
<td>9.0</td>
<td>7.0</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>Ross</td>
<td>6.5</td>
<td>10</td>
<td>12.3</td>
<td>10.7</td>
<td>4.8</td>
<td>2.2</td>
<td>7.3</td>
</tr>
<tr>
<td>17</td>
<td>Skillman</td>
<td>14.6</td>
<td>16</td>
<td>10.7</td>
<td>12.9</td>
<td>5.7</td>
<td>4.1</td>
<td>5.0</td>
</tr>
<tr>
<td>13</td>
<td>Ervay</td>
<td>8.7</td>
<td>10</td>
<td>12.4</td>
<td>10.7</td>
<td>5.4</td>
<td>4.7</td>
<td>3.5</td>
</tr>
<tr>
<td>22</td>
<td>Forest Lane</td>
<td>15.4</td>
<td>12</td>
<td>13.2</td>
<td>7.0</td>
<td>6.9</td>
<td>6.4</td>
<td>2.1</td>
</tr>
<tr>
<td>25</td>
<td>Cockrell Hill North</td>
<td>11.0</td>
<td>10</td>
<td>9.1</td>
<td>11.7</td>
<td>5.5</td>
<td>5.0</td>
<td>6.2</td>
</tr>
<tr>
<td>18</td>
<td>Samuel</td>
<td>17.0</td>
<td>24</td>
<td>13.3</td>
<td>11.1</td>
<td>3.5</td>
<td>6.3</td>
<td>2.5</td>
</tr>
<tr>
<td>28</td>
<td>Singleton</td>
<td>8.2</td>
<td>12</td>
<td>9.4</td>
<td>13.7</td>
<td>3.7</td>
<td>4.6</td>
<td>3.2</td>
</tr>
<tr>
<td>30</td>
<td>Lake June</td>
<td>5.3</td>
<td>6</td>
<td>9.3</td>
<td>11.1</td>
<td>3.6</td>
<td>4.6</td>
<td>5.5</td>
</tr>
<tr>
<td>47</td>
<td>Polk</td>
<td>15.1</td>
<td>14</td>
<td>9.3</td>
<td>8.0</td>
<td>5.0</td>
<td>5.0</td>
<td>3.5</td>
</tr>
<tr>
<td>45</td>
<td>Marsalis</td>
<td>13.1</td>
<td>12</td>
<td>8.5</td>
<td>9.7</td>
<td>4.3</td>
<td>2.5</td>
<td>5.2</td>
</tr>
<tr>
<td>41</td>
<td>Bonnie View</td>
<td>9.9</td>
<td>10</td>
<td>8.0</td>
<td>5.6</td>
<td>4.2</td>
<td>3.6</td>
<td>3.3</td>
</tr>
</tbody>
</table>
3.2 Segment-Level Evaluation

Each route is made up of segments that were subject to the evaluation and combined to create the corridor-level scores discussed in Section 3.1. Segment limits are defined by established schedule timepoints along the route, and account for variances in approaches to signalized intersections, turning movements, stop locations and other factors that may differ based on direction. A total of 123 segments across the 21 routes were evaluated, for a total 246 total directional segments.

Using the evaluation methodology, a detailed matrix was developed with each segment receiving scores for the eight metrics as well as a total score similar to the corridors. At a segment level, scores are more precise given the shorter length and resulted in a wider range from high to low. The highest scoring segment within the 100-point scale was 89 for a segment of Route 16 Ferguson in downtown Dallas, to a low of 20 for a portion of Route 41 Bonnie View. The top quintile of segments ranged from 65 to 89 points. Of these 48 segments, about 40% are within the Dallas Central Business District (CBD), highlighting the need for speed and reliability improvements within downtown Dallas along major bus corridors and around the West and East Transfer Centers. CBD focused improvements can benefit multiple routes that operate within common corridors.

Table 3-2 presents the top 20 segment scores outside of the CBD. As shown, the majority of these are associated with routes scoring in the top 10 at a corridor-level. In addition, nearly all of the segments have an end point at a transit facility, either a bus facility or a rail station. Figure 3-1 gives a sense of the overall location and ranking of segments across the frequent bus route network, with red, orange and yellow locations indicating a higher level of need.

One overarching finding based on the segment scores and a corresponding review of the heat maps in Appendix B is that the network experiences consistent delay at high-volume intersections such as where arterials cross other highways, and in and around DART off-street passenger facilities where speeds are slower due to a higher number of turn movements or intersections to access the facilities, along with the internal circulation through a facility.
### Table 3-2: Top 20 Segments Outside of CBD

<table>
<thead>
<tr>
<th>Route No.</th>
<th>Route Name</th>
<th>Direction</th>
<th>Segment Start</th>
<th>Segment End</th>
<th>Length</th>
<th>Transit Performance</th>
<th>Transit Intensity &amp; Ridership</th>
<th>Pop/Emp</th>
<th>Safety</th>
<th>Equity</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Westmoreland</td>
<td>SB</td>
<td>Parkland Station</td>
<td>Mockingbird/Harry Hines</td>
<td>1.5</td>
<td>24.6</td>
<td>23.4</td>
<td>9.9</td>
<td>9.0</td>
<td>8.5</td>
<td>6.3</td>
</tr>
<tr>
<td>20</td>
<td>Northwest Hwy</td>
<td>WB</td>
<td>Skillman/Larmanda</td>
<td>Park Lane Station</td>
<td>1.6</td>
<td>21.1</td>
<td>20.6</td>
<td>8.7</td>
<td>8.5</td>
<td>7.7</td>
<td>7.6</td>
</tr>
<tr>
<td>9</td>
<td>Jefferson-Gaston</td>
<td>EB</td>
<td>Cockrell Hill PTL</td>
<td>Jefferson/Hampton</td>
<td>2.3</td>
<td>22.3</td>
<td>21.0</td>
<td>9.5</td>
<td>4.6</td>
<td>8.2</td>
<td>5.5</td>
</tr>
<tr>
<td>1</td>
<td>Malcolm X-Maple</td>
<td>SB</td>
<td>Parkland Station</td>
<td>Maple/Wycliff</td>
<td>1.1</td>
<td>23.3</td>
<td>23.0</td>
<td>9.3</td>
<td>4.3</td>
<td>9.5</td>
<td>4.9</td>
</tr>
<tr>
<td>17</td>
<td>Skillman</td>
<td>NB</td>
<td>Southwestern/Amesbury</td>
<td>Skillman/Abrams</td>
<td>1.7</td>
<td>21.4</td>
<td>20.1</td>
<td>6.1</td>
<td>4.8</td>
<td>8.3</td>
<td>7.2</td>
</tr>
<tr>
<td>27</td>
<td>Ridgecrest</td>
<td>SB</td>
<td>Ridgecrest/Park Ln</td>
<td>Park Ln Station</td>
<td>2.2</td>
<td>22.4</td>
<td>21.3</td>
<td>7.2</td>
<td>5.2</td>
<td>6.6</td>
<td>7.8</td>
</tr>
<tr>
<td>23</td>
<td>Haskell</td>
<td>SB</td>
<td>Parkland Station</td>
<td>Lemmon/Oak Lawn</td>
<td>2.2</td>
<td>22.0</td>
<td>19.6</td>
<td>9.1</td>
<td>2.3</td>
<td>9.3</td>
<td>7.9</td>
</tr>
<tr>
<td>18</td>
<td>Samuell</td>
<td>WB</td>
<td>South Garland TC</td>
<td>Centerville/Shiloh</td>
<td>1.9</td>
<td>23.9</td>
<td>24.3</td>
<td>8.2</td>
<td>1.9</td>
<td>8.4</td>
<td>3.7</td>
</tr>
<tr>
<td>57</td>
<td>Westmoreland</td>
<td>NB</td>
<td>Westmoreland Station</td>
<td>Westmoreland/Davis</td>
<td>2.4</td>
<td>21.2</td>
<td>15.7</td>
<td>8.9</td>
<td>8.9</td>
<td>6.9</td>
<td>5.7</td>
</tr>
<tr>
<td>15</td>
<td>Buckner</td>
<td>NB</td>
<td>Buckner Station</td>
<td>Buckner/Lake June</td>
<td>1.3</td>
<td>23.4</td>
<td>22.2</td>
<td>9.6</td>
<td>7.3</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>23</td>
<td>Haskell</td>
<td>NB</td>
<td>MLK Station</td>
<td>Parry/First</td>
<td>0.8</td>
<td>24.5</td>
<td>23.3</td>
<td>7.0</td>
<td>0.7</td>
<td>8.7</td>
<td>0.3</td>
</tr>
<tr>
<td>17</td>
<td>Skillman</td>
<td>NB</td>
<td>SMU/Mockingbird Station</td>
<td>Southwestern/Amesbury</td>
<td>2.3</td>
<td>19.9</td>
<td>20.7</td>
<td>8.8</td>
<td>4.8</td>
<td>6.6</td>
<td>8.2</td>
</tr>
<tr>
<td>16</td>
<td>Ferguson</td>
<td>EB</td>
<td>Woodmeadow/Ferguson</td>
<td>South Garland TC</td>
<td>2.3</td>
<td>22.1</td>
<td>23.7</td>
<td>3.5</td>
<td>1.5</td>
<td>6.5</td>
<td>5.3</td>
</tr>
<tr>
<td>17</td>
<td>Skillman</td>
<td>SB</td>
<td>Southwestern/Amesbury</td>
<td>SMU/Mockingbird Station</td>
<td>2.0</td>
<td>21.3</td>
<td>22.9</td>
<td>2.0</td>
<td>3.1</td>
<td>6.1</td>
<td>8.0</td>
</tr>
<tr>
<td>20</td>
<td>Northwest Hwy</td>
<td>EB</td>
<td>NW Hwy/Plano</td>
<td>South Garland TC</td>
<td>2.5</td>
<td>17.0</td>
<td>24.8</td>
<td>1.2</td>
<td>6.5</td>
<td>9.1</td>
<td>4.8</td>
</tr>
<tr>
<td>16</td>
<td>Ferguson</td>
<td>WB</td>
<td>South Garland TC</td>
<td>Woodmeadow/Ferguson</td>
<td>2.3</td>
<td>21.7</td>
<td>20.4</td>
<td>9.0</td>
<td>1.1</td>
<td>8.1</td>
<td>5.4</td>
</tr>
<tr>
<td>20</td>
<td>Northwest Hwy</td>
<td>WB</td>
<td>South Garland TC</td>
<td>NW Hwy/Plano</td>
<td>2.4</td>
<td>15.0</td>
<td>22.4</td>
<td>6.3</td>
<td>7.8</td>
<td>8.7</td>
<td>4.7</td>
</tr>
<tr>
<td>9</td>
<td>Jefferson-Gaston</td>
<td>WB</td>
<td>Gaston/Paulus</td>
<td>Gaston/Peak</td>
<td>1.7</td>
<td>16.0</td>
<td>21.6</td>
<td>9.4</td>
<td>5.4</td>
<td>7.0</td>
<td>5.9</td>
</tr>
<tr>
<td>Route No.</td>
<td>Route Name</td>
<td>Direction</td>
<td>Segment Start</td>
<td>Segment End</td>
<td>Length</td>
<td>Transit Performance</td>
<td>Transit Intensity &amp; Ridership</td>
<td>Pop/Emp</td>
<td>Safety</td>
<td>Equity</td>
<td>Total Score</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>41</td>
<td>Bonnie View</td>
<td>NB</td>
<td>Camp Wisdom Station</td>
<td>Lancaster/Plaza</td>
<td>1.2</td>
<td>24.1</td>
<td>24.0</td>
<td>7.3</td>
<td>2.3</td>
<td>9.0</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>Skillman</td>
<td>NB</td>
<td>LBJ Skillman Station</td>
<td>Audelia/Forest</td>
<td>1.0</td>
<td>20.3</td>
<td>19.0</td>
<td>6.8</td>
<td>7.4</td>
<td>4.3</td>
<td>69.2</td>
</tr>
</tbody>
</table>

NOTE: Gray shading indicates segment is located on a route that scored in Top 10.
Figure 3-1: Segment-Level Evaluation Results Map

Source: HDR, GPC7 Team
3.3 Toolbox Recommendations

The initial tools and strategies recommended for each route took into consideration the corridor-level evaluation, more detailed segment-level scores, and supplemental and location specific analysis such as heat maps, field review, and bus operator feedback. Appendix D contains the Route Evaluation and Toolbox Recommendations summaries for each route.

These recommendations are represented in a series of maps for each route that document recommended toolbox strategies to address identified issues. The route maps consist of three parts:

- A route overview and profile map
- A route and segment evaluation summary
- Map(s) illustrating the type and location of recommended CORE tools along the route.

Figure 3-2a through Figure 3-4c show an example for Route 22, noting the content of each part and how to read the information. Recommendations for each route will be further developed during Phase 2 of the CORE effort in collaboration with City staff.

3.4 System Level Observations and Recommendations

This Phase 1 effort along with field observations also resulted in high level recommendations applicable to the entire system. These include:

1. Bus stop consolidation and amenities enhancements
2. Transit Signal Priority (TSP) as a baseline element for all frequent Local routes
3. Downtown Dallas bus corridors as a priority for CORE improvements
4. Level of service improvements

These system level recommendations are further described below along with anticipated outcomes. Further evaluation of these recommendations could result in changes to the DART Service Standards as well.

3.4.1 Bus Stop Consolidation and Enhancement

There are a substantial number of bus stops that should be evaluated for:

- ADA compliance, and modified where feasible
- Opportunities for improved access to the stops from nearby origins and destinations
- Amenities enhancements beyond a basic pole and sign blade
- Potential relocations of stops that are away from signalized intersections or located mid-block where pedestrian crosswalks are not available
- Consolidation in cases where 7 or more bus stops per mile are provided, especially on the frequent route network

Focusing on access points to the system and the customer experience at the bus stop level can result in enhanced customer safety and comfort, consistency with DART Service Standards, and improved accessibility for all to transit.
Figure 3-2a: Route Overview/Profile Example (Route 22 – Forest Lane)

Route Overview/Profile: The first part of the Route Evaluation and Toolbox Recommendation summary contains a basic route overview showing the route termini, weekday peak and midday service frequencies, average daily boardings, intersecting routes (bus, rail), key destinations and major transit facilities along the route, as well as a graphical depiction of daily boardings by stop along the route.

In this example, high boarding locations are at major transit facilities, but also for a segment along Forest Lane between Greenville Avenue and Plano Road.
Figure 3-3b: Route and Segment Evaluation Summary Example (Route 22 – Forest Lane)

**Route 22 – Forest Lane**

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>LOW</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

**SCORES BY SEGMENT**

In this example, the overall route scored high for transit delay, ridership, passenger load and combined population and employment along the route. For segment scores, the middle two segments along with the EB segment from Addison show the greatest need for improvement.
Figure 3-4c: Toolbox Recommendations Example (Route 22 – Forest Lane)

**Recommended Tools:** The third part contains location-specific recommendations from the Best Practices toolbox. These are shown on multiple pages, depending on how many of the segments contain recommendations.

The recommendations are represented by Toolbox icons on the map, and further described in the recommendations box. More detailed descriptions of the various tools are included in the Best Practices Toolbox in Appendix A.
3.4.2 Transit Signal Priority (TSP) Improvements

Work with cities to encourage TSP as a baseline element along key routes throughout the service area and along all frequent Local service routes to improve DART bus speed and reliability. Intersection locations should consider issues such as:

- Cross street vehicular volumes
- Signal phasing
- Intersection level of service
- Intersection with other frequent Local routes

3.4.3 Downtown Dallas as a Priority for CORE Treatments

Expand the existing limited sections of dedicated bus-only lanes to a more comprehensive system that incorporates TSP and other tools, particularly on streets and segments where the current 18 routes accessing or passing through the CBD result in a very frequent combined headway, such as Elm, Commerce, Harwood, Houston, Griffin, Lamar, San Jacinto, and Ross.

While these corridors were excluded from this study in terms of recommendation development, stakeholder input (including bus operators and Service Planning staff), field observations and data suggest a strong need and opportunity for CORE program treatments to be implemented. This should be a focus of the Phase 2 effort. Key benefits will include enhanced reliability and travel time through congested areas of downtown Dallas, improved visibility of transit to support increased use, and a decrease in issues related to curb use and enforcement that hinder bus operations at certain locations.

3.4.4 Level of Service Improvements

As part of the Bus Network Redesign Phase 2 efforts, continue to improve service headways on key bus corridors throughout the service area to grow the frequent Local network. DART should also continue to look for opportunities to support even more frequent service where feasible. This will reduce the need for customers to consult schedules and make DART bus service more useful for more people.

These frequent service corridors are most suitable for the CORE toolbox application of dedicated bus lanes, which provide the highest level of bus speed and reliability improvements. DART could advance corridor level improvements under FTA programs; however, service improvements and/or at least 50 percent of the route in a dedicated right-of-way would be needed to qualify.

The FTA Capital Investment Grant program defines both fixed guideway BRT and corridor-based BRT under Small Starts. These are nearly identical other than the requirement that most of the route be in a fixed guideway and the need for weekend service, FTA requires corridor-based BRT projects to include all of the same characteristics defined for fixed guideway BRT except the separated right-of-way for the exclusive use of public transportation along 50 percent or more of the route during peak periods and the weekend service.

Corridor-based BRT projects must contain the following elements: 1) The route must have defined stations that offer shelter from the weather and provide information on schedules and routes. 2) The route must provide faster passenger travel times through congested intersections by using active signal priority in separated guideway if it exists, and either queue-jump lanes or active signal priority in non-separated guideway. 3) The route must provide short headway, bidirectional service for at least a fourteen-hour span of service on weekdays. Short headway service on weekdays consists of either a) fifteen-minute
maximum headways throughout the day, or b) ten-minute maximum headways during peak periods and twenty-minute maximum headways at all other times. 4) The provider must apply a separate and consistent brand identity to stations and vehicles.

FTA also has project justification warrants that allow projects to move through the process faster and receive automatic medium ratings in some evaluation categories. This includes minimum ridership levels based on project cost. The lowest warrant is 3,000 riders per day for projects up to $50 million.
4  Summary and Next Steps

The DART CORE program supports the goals in 2045 Transit System Plan and Strategic Plan by promoting transit priority and other treatments within key bus corridors to enhance operational efficiency, increase ridership and create a quality, seamless travel experience. It also enables DART to support the DARTZoom bus network redesign implemented in January 2022.

This Phase I effort provides DART with the framework to advance CORE and establish an ongoing program of improvements to the bus network. While the focus for this initial evaluation was on the 21 frequent Local routes, the Best Practices Toolbox includes strategies that can be applied systemwide to all bus routes. For most of these tools, jurisdictional collaboration and funding resources will be key to success. The result will be a stronger, more reliable bus network to complement and connect with the extensive LRT system, as well as create a stronger network accessible from GoLink zones throughout the service area. Reporting out on progress and the benefits will be important to demonstrate benefits to the region, DART, cities, and our riders.

The following sections outline the implementation strategy and next steps.

4.1  Policy and Program Development

One the first steps recommended is development of a DART Board of Directors Policy to formalize support for the CORE program and outline criteria and guidelines for funding and cost-sharing approaches with key partners, including DART cities, NCTCOG, TxDOT and other federal programs.

Given that improvements will primarily be within city or state rights-of-way, their support for the CORE program is critical to its success. As such, program strategies should include guidance for how to leverage funding at various levels to achieve mutual objectives. For example, one of the goals of CORE is improved access and connectivity to transit. A CORE program policy could outline a cost-sharing strategy that leverages DART and/or other external funds to improve city sidewalks within a certain distance of bus stops or to support completion of bike trail connections near key transit facilities, which would be beneficial for DART in terms of supporting access and use of the system, but also enhance the customer journey to and from transit through improvements to city infrastructure.

It is recommended that the program also include the development of Bus Corridor Design Guidelines that can be used by both city staff and private developers to better accommodate bus service and amenities within a corridor or at new development sites. These design guidelines could be integrated as an element of the existing DART Service Standards.

4.2  Implementation Strategy and Key Considerations

Next steps for Phase 2 of this CORE effort include development of a program of bus corridor improvements using the information within this Phase 1 evaluation to prioritize corridors, segments and spot or area improvements. While the outcomes of this report can be used to identify and advance priority projects, CORE improvements can also emerge in several other ways, including through the identification of opportunities with DART cities for other key routes that provide important connections across the service area.
4.2.1 Key Considerations

As DART advances projects into Phase 2 and continues to advance the CORE program, key considerations include the following:

- Equitable allocation of investments across the DART Service Area
- Opportunity-based investments vs. programmatic approach
- Leveraging funds to support projects

First, with bus routes serving most of the 13-city service area, the CORE program should consider an allocation of investments that aligns with both DART and city needs. For some cities, corridor investments may be critical to move a more people faster and more reliably to major job centers, in others access or safety improvements may be needed to enhance pedestrian access to a major bus stop or station.

Concentrating on specific routes or route segments can provide tangible, quantifiable speed and reliability benefits. Starting with a priority set of locations or corridors has the benefit of reducing complexity in terms of coordination and is more likely to result in a positive “proof of concept”. A balanced investment strategy that implements a set of focused investments while also enabling a range of improvements across the route network should be advanced. This approach can help build support and provide a solid foundation upon which the CORE program can grow.

This allows DART to build on collaboration with local jurisdictions to identify opportunity-based projects at locations or segments that may have City projects already planned and programmed. These opportunities can be identified as cities respond to pressing infrastructure needs, develop bond programs, or as part of multi-agency grant applications where a transit component can strengthen an application. By staying in regular contact and being on the lookout for projects and programs within bus corridors, or that coincide with locations where DART has identified a need for transit speed and reliability improvements, projects can be advanced strategically, often with cost- and time-savings.

Lastly, DART will consider opportunities to leverage grants and other funds to help advance the CORE program. Aligning projects and funding opportunities with outcomes related to climate, pollution reduction, innovation, and equity benefits to Justice40 communities should be a priority as the program is developed. Combining projects into a comprehensive and compelling program can also be beneficial. While projects do not always have to be ‘shovel-ready’, it is important to have a ready queue of CORE projects with sufficient project development completed such that they can be packaged in a way that maximizes their competitiveness for grants. This includes having support across internal departments and city staff. Given DART’s current focus on improving service and the rider experience, establishing a 5-year program of CORE projects is recommended to facilitate quick-turnaround on these types of opportunities.

4.2.2 Phase 2 Focus

Phase 1 of this CORE effort highlighted key corridors, segments and spot locations that have the highest level of need and made recommendations for tools and strategies along more than 230 miles of frequent Local bus routes. For Phase 2, it is recommended that the focus be refining recommendations in collaboration with city staff and advancing development of projects and cost estimates for the following elements.

**Corridor-Level Improvements**

Corridors provide an opportunity to bundle a series of segment and spot improvements along one route or a corridor used by multiple routes. Focusing speed and reliability improvements on corridors is an
An effective strategy to improve transit performance and experience noticeable travel time savings, with the potential to increase ridership. A corridor-based project can also be competitive for grants and allow multiple jurisdictions to benefit from a coordinated set of improvements.

Based on the Phase 1 evaluation, corridors (in order of corridor-evaluation score but not necessarily implementation priority) for further development in Phase 2 include:

- Route 23 Haskell (7.1 miles)
- Route 20 Northwest Highway (17 miles)
- Route 9 Jefferson/Gaston (12.2 miles via Downtown Dallas)
- Route 57 Westmoreland (17.5 miles)
- Route 38 Ledbetter (15.4 miles)
- Route 15 Buckner (12.4 miles)
- Route 16 Ferguson (14 miles; 4.5 miles via freeway)
- Route 22 Forest Lane (15.4 miles)

Further analysis will consider recent on-board rider survey data to understand average trip length, major transfer activity, and key origin-destination pairs along the corridors. In some cases, spot or segment improvements may be more appropriate. Phase 2 will focus on identifying the most competitive route(s) for Corridor-based BRT, or potentially fixed-guideway BRT, as defined by FTA. To qualify for the FTA corridor-based BRT programs, routes need to have the maximum headway (15-minutes all day; which only four routes have right now), and can also meet FTA warrants if cost is under $50 million with at least 3,000 riders a day. Only Routes 57 and 22 have daily ridership over 3,000 as of mid-2023.

In addition to the frequent Local routes evaluated in this Phase 1 report, it is recommended that Phase 2 include a high-level assessment of other major corridors in the service area, especially those under consideration for frequency improvements in Bus Network Redesign Phase 2, or that may serve longer trips and connect residents throughout the service area to activity nodes such as major employment, medical or education facilities.

**Segment/Spot Improvements**

Spot and segment improvements are projects that target specific points, intersections, or short segments along a bus route. They are typically less complex improvements that generate quick fixes to transit speed and reliability issues that have emerged over time or have been identified by operators. The identification and addressing of spot improvements is generally a less formal process than the corridor development process. Phase 2 will focus on a detailed review of high scoring segments to develop a prioritized list of smaller-scale projects.

**Active Transit Zones**

Active Transit Zones are areas where multiple routes converge, presenting an opportunity for speed and reliability, as well as access and safety-related, improvements that can have broad benefits across multiple routes. These centers of activity, such as transfer centers, transit centers, rail stations, or other major destinations, provide an opportunity to bundle improvements in a specific zone to enable the movement of many people to and from a busy location. The zone approach provides an opportunity to improve bus flow where there are high passenger loads and many converging routes, allowing benefits to extend to multiple routes. Examples include South Garland Transit Center, Park Lane Station, and SWMD/Parkland Station.
Downtown Dallas Bus Priority Corridors

With multiple routes passing through or destined to downtown, Phase 2 should focus on defining bus priority treatments for major streets such as Elm, Commerce, Harwood, Griffin, Lamar, Houston, San Jacinto, and Ross. This can improve travel time through some of the most congested locations along routes and support greater use of transit.

4.3 Monitoring and Progress Reporting

Phase 2 of the CORE effort will outline procedures for monitoring and reporting on the program as well. This is needed not only to track the results of CORE improvements but also to gauge internal and external conditions as they affect route performance and service quality. New developments, signal timing changes, roadway modifications, changes in traffic and travel patterns and other variables can lead to changes in service quality, speed, and reliability within the DART bus network. Periodic route reviews can keep the CORE program up to date and focused on areas with the greatest need for improvement.

Measuring and reporting outcomes should be an integral part of the program and be used to promote and market CORE and the role and benefits of bus service in the overall network. Increased awareness and recognition of the practical gains in speed, reliability and on-time performance can help to drive the continued expansion and success of CORE systemwide. This may include an annual report or interactive webpage on planned or completed projects documenting the background, issue, project or improvement, benefits and funding partners.
APPENDIX A
Best Practices Toolbox
Enhancing streets for transit and people

BEST PRACTICES TOOLBOX

JUNE 2023
CONTENTS

1 Introduction ........................................ 1
2 Transit Priority Treatments ................. 4
3 Street and Intersection Design .......... 7
4 Bus Stops and Routing ..................... 13
5 Traffic Regulations ......................... 19
6 Traffic Signals ............................... 22
7 Summary ........................................ 28
DART bus riders, many of whom rely on the service for their daily needs, often experience delays and unreliable travel times as a result of their bus being stuck in traffic or delayed at an intersection.

DART bus service is not just essential for the daily needs of riders, but plays a critical role in supporting the mobility plans, comprehensive plans, and safety plans of service area cities. By providing access to opportunity and supporting a healthy economy and quality of life, bus service is a vital component of the local and regional mobility network.

However, to fully realize the benefits of bus-based mobility, we need to recognize its value and invest in streets to enhance the role of transit and move buses and people more effectively. The Bus Corridor Improvement Program, referred to as CORE (Corridor Optimization + Rider Experience), is designed to promote transit priority within key bus corridors, enhance operational efficiency, and increase ridership by improving the customer experience.

The initial phase of the CORE program focuses on DART’s 22 Frequent Routes and leverages a data-driven, stakeholder-informed, and partnership-oriented methodology. By aligning with DART and partner goals and objectives and drawing on best practices from other metropolitan areas that have made bus speed and reliability a priority, CORE provides a powerful approach to enhancing bus service.

By taking action and supporting the development and implementation of CORE, we can help make a real difference in the lives of DART riders and the communities we serve. With buses capable of carrying over 40 passengers at any given time, let’s ensure that this critical mode of transportation reaches its full potential and continues to support the needs of our growing service area.
What are Bus Corridor Improvements?

The CORE program includes these three primary focus areas:

**TRANSIT PRIORITY TREATMENTS**
Traffic management strategies that allow buses to bypass traffic congestion and improve their travel time and reliability. Examples of transit priority treatments include bus lanes, signal priority, and queue jump lanes.

**CONNECTIVITY AND SAFETY**
Improving access to bus stops, reducing conflicts and enhancing safety for cyclists and pedestrians along bus corridors.

**ADDITIONAL MOBILITY IMPROVEMENTS**
Corridor enhancements that align with and support local jurisdictions and community goals and objectives.

Why Make Bus Corridor Improvements?

To make transit service on DART’s busiest corridors faster and more reliable, and to offer an improved customer experience that will attract more riders. In addition, these improvements will:

**Enhance** the attractiveness and competitiveness of public transit as a mode of transportation, which can encourage more people to use it instead of driving alone.

**Reduce** vehicle miles traveled (VMT) and greenhouse gas emissions by shifting trips from private cars to buses, which have lower per capita environmental impacts.

**Improve** mobility and accessibility for all, but with an emphasis on transit-dependent individuals who rely on buses for their daily needs.

**Support** economic development and social equity by connecting people to jobs, education, health care, and other opportunities across the region.

To benefit not only transit riders but also drivers, pedestrians, cyclists, businesses, and the environment by supporting more livable, sustainable, and inclusive communities.
**DESIRED OUTCOME**

Promote transit priority within key corridors to improve the rider experience, enhance efficiency and increase ridership

<table>
<thead>
<tr>
<th>CORE GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Enhance Speed &amp; Reliability</strong></td>
</tr>
<tr>
<td>Coordinate with service area cities to prioritize and implement speed and reliability improvements</td>
</tr>
<tr>
<td>Estimate benefits and measure against performance standards</td>
</tr>
<tr>
<td><strong>Improve Operational Safety</strong></td>
</tr>
<tr>
<td>Reduce conflicts between corridor users</td>
</tr>
<tr>
<td><strong>Improve Access &amp; Connectivity</strong></td>
</tr>
<tr>
<td>Identify and deploy bike and walk safety upgrades for better transit access</td>
</tr>
</tbody>
</table>

**IDENTIFYING BEST PRACTICES**

To identify the most appropriate actions DART and service area cities can take to develop and implement transit priority treatments, a nationwide scan of best practices was completed. This scan found a range of approaches with strong collaboration between the transit agency and service area cities being the most essential common ingredient.

**Best Practice Examples include:**

- Help DART buses get ‘unstuck’ from traffic
- Maximize person throughput on DART’s busiest corridors
- Improve the rider experience

- Seattle
- NYC
- Charlotte
- Chicago
- Denver
- Portland
- Vancouver BC
TRANSIT PRIORITY TREATMENTS
POTENTIAL TRANSIT PRIORITY TREATMENTS

Based on the nationwide best practices review, four categories of potential transit priority treatments are recommended, including:

- **STREET AND INTERSECTION DESIGN**
  
  Tools that improve speed, safety, access and reliability through the physical design of streets and intersections.

- **BUS STOPS AND ROUTING**
  
  Tools that improve speed and reliability through stop location and spacing.

- **TRAFFIC REGULATIONS**
  
  Transit-beneficial operational modifications that require minimal capital investment, including, when necessary, enforcement.

- **TRAFFIC SIGNALS**
  
  Tools that modify signal timing, phasing, and indications to improve bus speed and reliability.

*Categories derived from King County Metro Transit Speed and Reliability Guidelines and Strategies, August 2021.*
# POTENTIAL TREATMENTS OVERVIEW

<table>
<thead>
<tr>
<th>GOALS</th>
<th>CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance Speed &amp; Reliability</td>
<td>Improve Safety</td>
</tr>
<tr>
<td>Coordination Level (estimated)</td>
<td>Cost Range (estimated)</td>
</tr>
</tbody>
</table>

## STREET AND INTERSECTION DESIGN

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Coordination Level</th>
<th>Cost Range</th>
<th>Spot or Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated Bus Lane</td>
<td>Medium</td>
<td>Medium</td>
<td>Segment</td>
</tr>
<tr>
<td>Queue Bypass (Short Bus Lane)</td>
<td>Medium</td>
<td>Medium</td>
<td>Segment</td>
</tr>
<tr>
<td>Roadway Channelization</td>
<td>Low</td>
<td>Low</td>
<td>Segment</td>
</tr>
<tr>
<td>Turn Radius Improvements</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
<tr>
<td>Speed Hump Modifications</td>
<td>Low</td>
<td>Low</td>
<td>Segment</td>
</tr>
</tbody>
</table>

## BUS STOPS & ROUTING

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Coordination Level</th>
<th>Cost Range</th>
<th>Spot or Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Stop Location Optimization</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
<tr>
<td>Route Design</td>
<td>Medium</td>
<td>Medium</td>
<td>Segment</td>
</tr>
<tr>
<td>Bus Stop Lengthening</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
<tr>
<td>Bus Bulbs</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
<tr>
<td>Boarding Islands</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
</tbody>
</table>

## TRAFFIC REGULATIONS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Coordination Level</th>
<th>Cost Range</th>
<th>Spot or Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn Restrictions/Exemptions</td>
<td>Low</td>
<td>Low</td>
<td>Spot</td>
</tr>
<tr>
<td>Parking Removal/Alterations</td>
<td>Low</td>
<td>Low</td>
<td>Spot/Segment</td>
</tr>
</tbody>
</table>

## TRAFFIC SIGNALS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Coordination Level</th>
<th>Cost Range</th>
<th>Spot or Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Traffic Signal Retiming</td>
<td>Medium</td>
<td>Medium</td>
<td>Segment</td>
</tr>
<tr>
<td>Transit Signal Priority (Active)</td>
<td>Medium</td>
<td>Medium</td>
<td>Segment</td>
</tr>
<tr>
<td>Signal Modifications</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
<tr>
<td>New Signal Installation</td>
<td>Medium</td>
<td>Medium</td>
<td>Spot</td>
</tr>
<tr>
<td>Queue Jumps</td>
<td>Low</td>
<td>Low</td>
<td>Spot</td>
</tr>
</tbody>
</table>
STREET AND INTERSECTION DESIGN

Tools that improve speed and reliability through the physical design of streets and intersections
DEDICATED BUS LANE

Dedicated bus lanes are a portion of the street designated by signs and markings for the preferential or exclusive use of transit vehicles, sometimes permitting limited use by other vehicles.

**TYPICAL APPLICATION**
Downtown settings or streets with high motor vehicle traffic and transit vehicle volume and congestion.

**POTENTIAL BENEFITS**
Reduce delays due to traffic congestion and help raise the visibility of high-quality bus service.

**CHALLENGES**
Strict enforcement is necessary to maintain their use and integrity. Subject to encroachment due to double-parking, deliveries, or taxicabs. Ongoing maintenance of colored markings.

**BUS CORRIDOR TREATMENT RATING**

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance Speed &amp; Reliability</td>
<td></td>
<td>***</td>
<td>****</td>
</tr>
<tr>
<td>Improve Safety</td>
<td>♠♠</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve Access &amp; Connectivity</td>
<td></td>
<td></td>
<td>♠</td>
</tr>
</tbody>
</table>

DEDICATED BUS LANE EXAMPLE

Houston METRO has implemented dedicated bus lanes that improve transit speed and reliability. They have also included an additional lane that promotes ridesharing by dedicating the lane to buses and high-occupant-vehicles (HOV).

- Implemented on Travis Street from Gray St. to Commerce St. in Downtown Houston
- Implemented in 2005

The red striping and markings provide visual instruction to road users. These red lanes improve traffic flow by having designated lanes for public transit vehicles, and they can also improve safety for drivers, cyclists, and pedestrians.
**QUEUE BYPASS (SHORT BUS LANE)**

Queue Bypass or short bus lanes, allow transit vehicles to bypass long queues that form at major cross streets.

**Figure 2**: Queue Bypass Example from NACTO

**TYPICAL APPLICATION**

At the approaches to signalized intersections via separate lane and transit signal.

**POTENTIAL BENEFITS**

Allow transit vehicles to bypass general vehicle queues and right-turn queues.

**CHALLENGES**

Subject to encroachment due to double-parking, deliveries, or taxicabs. Strict enforcement is necessary to maintain their use and integrity.

**BUS CORRIDOR TREATMENT RATING**

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>🌟🌟🌟</td>
<td>🌟🌟🌟🌟</td>
</tr>
</tbody>
</table>

**Enhance Speed & Reliability** 🌟🌟🌟

**Improve Safety** 🌟🌟

**Improve Access & Connectivity** 🌟

---

**QUEUE BYPASS (SHORT BUS LANE) EXAMPLE**

MTA in New York City initiated the Better Buses Restart initiative in 2020 which resulted in over 16 miles of new dedicated bus lanes.

Queues along W 86th Street approaching Central Park West during peak hours often prevented the bus from accessing the stop.

The queue jump lane at E 86th Street at the approach to 5th Avenue provides a better positioning for buses. The design of the lane created channelization that reduced the general travel lanes to a single lane to further prioritize bus movements.

86th Street is part of MTA’s Select Bus Service, their bus rapid transit (BRT) network. Customer travel times typically improve 10-20% along corridors with priority treatments.

---

Photo 1: Queue Jump Lane on Eastbound E 86th Street at Central Park West
ROADWAY CHANNELIZATION

Roadway channelization for buses helps by having different lanes serve a specific purpose, such as having bus-only lanes.

ROADWAY CHANNELIZATION EXAMPLE

New York City implemented several improvements to the Sheepshead Bay Road Corridor to improve safety. Some of the improvements will also aid bus services such as creating channelized roadways to increase bus reliability.

Figure 3: Transit Corridor Example from NACTO

TYPICAL APPLICATION
Can be implemented on any transit corridor served by bus or other forms of transit such as streetcars.

POTENTIAL BENEFITS
Allows buses to safely and conveniently move into specific lanes.

CHALLENGES
Conflicts with other road users can occur causing delay.

BUS CORRIDOR TREATMENT RATING

Enhance Speed & Reliability ◆
Improve Safety ◆◆
Improve Access & Connectivity ◆◆◆
TURN RADIUS IMPROVEMENTS

Transit vehicles typically require an effective turning radius of approximately 20–30 feet depending on lane width and presence of curbside parking lanes.

Figure 4: Turn Radius Improvement Example from NACTO

TURN RADIUS IMPROVEMENTS EXAMPLE

The City of St. Paul has developed a new streets design manual that calls out specific designs for curb radii that considers turning movements of buses and how to effectively design turns that won’t impede on bus travel.

TYPICAL APPLICATION
At the approaches to signalized intersections.

POTENTIAL BENEFITS
Curb extensions typically reduce pedestrian crossing distances.

CHALLENGES
May have to use part of the oncoming travel lane and/or move stop bar to accommodate for the wide turn.

BUS CORRIDOR TREATMENT RATING

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance Speed &amp; Reliability</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Improve Safety</td>
<td>♦</td>
<td>♦</td>
</tr>
<tr>
<td>Improve Access &amp; Connectivity</td>
<td>♦</td>
<td>♦</td>
</tr>
</tbody>
</table>
SPEED HUMP MODIFICATIONS

Modifications to speed humps include speed humps that have wheel cut-out openings to allow large vehicles like buses to pass unaffected while continuing to reduce car speeds.

**SPEED HUMP MODIFICATIONS EXAMPLE**

The City of Cincinnati installed temporary speed cushions on Winneste Avenue as a pilot project. The speed cushions help reduce traffic speed and increase pedestrian safety while having minimal delay to transit operations.

![Before and After Comparison](image)

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of Vehicles Speeding</td>
<td>95%</td>
</tr>
<tr>
<td>Average Speed</td>
<td>37 mph</td>
</tr>
<tr>
<td>Percentage of Vehicles Exceeding 40 mph</td>
<td>25%</td>
</tr>
</tbody>
</table>

**BUS CORRIDOR TREATMENT RATING**

<table>
<thead>
<tr>
<th>Enhance Speed &amp; Reliability</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improve Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve Access &amp; Connectivity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CHALLENGES**

Requires coordination with city to construct.

**POTENTIAL BENEFITS**

Reduces speeds for vehicles while minimizing impacts and reducing wear and tear on buses.

**TYPICAL APPLICATION**

On roadways that have or need traffic-calming measures.
BUS STOPS AND ROUTING

Tools that improve speed and reliability through stop location and spacing
BUS STOP LOCATION OPTIMIZATION

Relocation or consolidation of bus stops to optimize placement and minimize delay while considering pedestrian accessibility.

BUS STOP LOCATION OPTIMIZATION EXAMPLE

Chicago Transit Authority (CTA) conducted a study on bus stop spacing for corridors where transit service was modified.

Stop consolidation and the introduction of the express routes led to time savings of 5-7% for both local and express routes.*


Typical Application

On bus corridors where very close stop placement results in excessive bus delay.

Potential Benefits

Improve bus flow, speed and reliability.

Challenges

Bus stop siting and relocation can raise rider and neighborhood concerns.

BUS CORRIDOR TREATMENT RATING

Enhance Speed & Reliability  
Improve Safety  
Improve Access & Connectivity

Low  
Medium  
High
ROUTE DESIGN

Simple, direct routing on arterials without major deviations or loops simplifies the system and reduces travel times, may be paired with first/last mile improvements for accessibility.

ROUTE DESIGN EXAMPLE

Dallas Area Rapid Transit (DART) completed a major restructuring of their entire bus network, and made it operational in January 2022. Overall DART streamlined routes, and significantly expanded on-demand service (Go Link). By making the new bus routes more direct, focusing on major transit corridors, and reducing the number of bus stops, DART bus service is faster, ensuring passengers get to their destinations quicker and improving connections.

TYPICAL APPLICATION

Systemwide where feasible.

POTENTIAL BENEFITS

Fewer turning movements improves travel times and makes the system more legible for customers.

CHALLENGES

High ridership locations may not be along arterials, requiring route deviations.

BUS CORRIDOR TREATMENT RATING

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

Enhance Speed & Reliability

Improve Safety

Improve Access & Connectivity

With the implementation of this new service, 74% of DART service-area residents have access to transit services within walking distance.

The new service increases the number of jobs that an average resident of the DART Service Area can reach in one hour by 34% compared to the prior bus network.
BUS STOP LENGTHENING

Short transition distances into bus stop areas or pullouts add delay to transit service and require sharper transitions to the curb.

**TYPICAL APPLICATION**

Applicable where sharp entry/exit angles slow entry or exit.

**POTENTIAL BENEFITS**

Longer stops ease transitions into and out of stops. Can be used to distribute queuing riders along the sidewalk.

**CHALLENGES**

Require more curb length, reduces curbside parking spots.

BUS STOP LENGTHENING EXAMPLE

New York MTA removed several bus stops along its B38 route to accommodate the transition to longer buses. With this they also updated some of the stops to be longer to accommodate the longer buses. The longer buses will make the route more efficient by carrying more people.
Bus bulbs are permanent sidewalk extensions that allow buses to pull up to the curb without leaving the travel lane, saving valuable time.

**Figure 9: Bus Bulb Example from NACTO**

**Typical Application**
Applicable in both dedicated and mixed-traffic conditions for locations where buses are delayed re-entering travel lanes.

**Potential Benefits**
Reduces travel delay and boarding delay, by eliminating transition movements into and out of bus stop areas. This also acts as a curb extension to shorten pedestrian crossings.

**Challenges**
Traffic buildup behind transit vehicles.

**Bus Bulb Example**
A study conducted by the City of New Jersey looked at the benefits a bus bulb would have on transit travel times. The study concluded that bus travel time savings as a result of the bus bulbs ranged between 15 and 30 seconds per bus stop.
BOARDING ISLANDS

Boarding island stops provide dedicated space for transit passengers and amenities while maintaining a clear pedestrian path on the sidewalk, and/or bicycle lane behind the island.

**Figure 10:** Bus Boarding Island Example from NACTO

**TYPICAL APPLICATION**
Applicable on streets with center-running transit, or on routes where high-volume bike lanes are in place.

**POTENTIAL BENEFITS**
Reduces transit vehicle dwell times, provides a refuge area for pedestrians crossing the street, and minimizes bus/bike conflicts at stops.

**CHALLENGES**
Right-of-way limitations can restrict feasibility.

BOARDING ISLANDS EXAMPLE

In partnership with TriMet, PBOT installed two types of temporary platforms. The first platform removes the conflict with the bike lane making it safer for bicyclist traveling in the bike lane. They also installed a temporary asphalt platform to assist in boarding of buses.
Transit-beneficial operational modifications that require minimal capital investment, including, when necessary, enforcement.
Prohibiting automobile turns (primarily left-turns) where there are no dedicated turn lanes that would present issues to efficient bus movement or pedestrian access, and shifting turn volume to the intersections where they can be best accommodated using signal phases and turn lanes.

As part of the Geary Blvd. Improvement Project, SFMTA proposed left-turn restrictions at some intersections to reduce conflicts between vehicles and people walking and improve traffic safety by increasing driver visibility and providing space for larger center median pedestrian refuges.
PARKING REMOVAL/ALTERATIONS

The removal of parking completely or removal of parking spots is sometimes necessary to implement transit measures such as bus lanes.

**TYPICAL APPLICATION**

Urban roadways where bus lanes or transit lanes are planned.

**POTENTIAL BENEFITS**

Allow spaces for bus lanes and transit lanes as well as bus stop improvements.

**CHALLENGES**

Stakeholder perceptions regarding loss of parking.

**BUS CORRIDOR TREATMENT RATING**

<table>
<thead>
<tr>
<th>Enhance Speed &amp; Reliability</th>
<th>Improve Safety</th>
<th>Improve Access &amp; Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>✖️</td>
<td>✖️</td>
</tr>
<tr>
<td>Medium</td>
<td>✬</td>
<td>✬</td>
</tr>
<tr>
<td>High</td>
<td>✬</td>
<td>✬</td>
</tr>
</tbody>
</table>

**PARKING REMOVAL/ALTERATIONS EXAMPLE**

San Francisco and SFMTA have implemented a project throughout the city to remove over 1,000 on-street parking spots to improve the safety and speed of bus boarding.
Tools that modify signal timing, phasing, and indications to improve bus speed and reliability.
PASSIVE TRAFFIC SIGNAL RETIMING

Traffic signal modification to create “green wave” for buses.

**Figure 13:** Passive Traffic Signal Retiming Example from NACTO

### TYPICAL APPLICATION
Urban roadways with frequent signalized intersections.

### POTENTIAL BENEFITS
Reduces dwelling time stopped at signalized intersections and bus delay.

### CHALLENGES
Signal timing without consideration of dwell times at bus stops can further cause bus dwell time at intersections.

## PASSIVE TRAFFIC SIGNAL RETIMING EXAMPLE

Metropolitan Transportation Commission in California has created the Program for Arterial System Synchronization (PASS) to coordinate with the city on signal timing to improve traffic flow, address safety concerns, prevent stop delays and cut down on air pollution.

### PASS BENEFITS

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time savings</td>
<td>23%, or more than 3.2 million hours</td>
</tr>
<tr>
<td>Fuel consumption savings</td>
<td>16%, or over 3.1 million gallons</td>
</tr>
<tr>
<td>Average auto speed increase</td>
<td>38%</td>
</tr>
<tr>
<td>Total emissions reduction</td>
<td>124 tons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total project costs</td>
<td>$1.4 million</td>
</tr>
<tr>
<td>Total lifetime benefits</td>
<td>$86.2 million</td>
</tr>
<tr>
<td>Overall benefit-cost ratio</td>
<td>61:1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel consumption savings</td>
<td>16%, or over 3.1 million gallons</td>
</tr>
<tr>
<td>Average auto speed increase</td>
<td>38%</td>
</tr>
<tr>
<td>Total emissions reduction</td>
<td>124 tons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total project costs</td>
<td>$1.4 million</td>
</tr>
<tr>
<td>Total lifetime benefits</td>
<td>$86.2 million</td>
</tr>
<tr>
<td>Overall benefit-cost ratio</td>
<td>61:1</td>
</tr>
</tbody>
</table>

**BUS CORRIDOR TREATMENT RATING**

- **Enhance Speed & Reliability**: ☀️☀️☀️
- **Improve Safety**: ☀️☀️☀️
- **Improve Access & Connectivity**: ☀️☀️☀️
**TRANSIT SIGNAL PRIORITY (ACTIVE)**

Transit Signal Priority (TSP) tools modify traffic signal timing or phasing when transit vehicles are present, and can work on thru, left-, and right-turning movements.

SamTrans (California) is implementing a TSP project on its El Camino Real transit route. This project will improve SamTrans’ on-time performance by reducing bus delays at intersections in order to provide more reliable service. This project will also have negligible impacts to cross streets.

Combined with other measures, 15 to 20 minutes in travel time savings could result from implementing TSP as one of the measures.

In NYC, TSP has reduced bus travel times about 14% during weekday peak morning and evening commuting periods.
SIGNAL MODIFICATIONS

Intersections updated with shorter signal cycles reduce net delay to transit vehicles, especially at near-side stop locations, or across freeway corridors where frontage roads exist, may also include protected left-turn movements at signalized intersections where they are currently unprotected.

NYC has created a program to implement shorter traffic signal phases to reduce delay to transit buses. In addition to these shorter phases, the city has also installed other traffic signal measures such as the leading pedestrian signal to promote pedestrian safety.

TYPICAL APPLICATION
On signalized streets with frequent transit service, in mixed-traffic lanes.

POTENTIAL BENEFITS
Reduce delay at intersection for buses and other users such as pedestrians.

CHALLENGES
Need to accommodate pedestrian clearance times and crossing distance.

BUS CORRIDOR TREATMENT RATING

Enhance Speed & Reliability

Improve Safety

Improve Access & Connectivity

Low

Medium

High

SIGNAL PHASE MODIFICATION EXAMPLE

Figure 14: Intersection Update Example from NACTO
**NEW SIGNAL INSTALLATION**

New signal installation can help in phasing out older signals with new modern traffic signals to promote Transit Signal Progression.

**Figure 15:** TSP signal Example from NACTO

---

**NEW SIGNAL INSTALLATION EXAMPLE**

Nashville MTA completed several intersection upgrades along Murfreesboro Pike, one of its busiest corridors. The improvements included technology enabled to help smooth traffic flow and allow WeGo (Nashville’s transit system) buses to improve their on-time performance.

---

**Typical Application**

Typically, when intersections are reconstructed.

**Potential Benefits**

Improve bus reliability, reduce delay.

**Challenges**

Can be competing priorities for signal ‘share’.

---

**BUS CORRIDOR TREATMENT RATING**

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance Speed &amp; Reliability</td>
<td></td>
<td>✬</td>
<td>✬✭</td>
</tr>
<tr>
<td>Improve Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improve Access &amp; Connectivity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**QUEUE JUMPS**

Queue Jumps allow buses to easily enter traffic flow in a priority position.

**QUEUE JUMPS EXAMPLE**

To keep buses moving, King County Metro added a queue jump at the intersection at Interurban Ave. S. and 52nd Ave. S.

Buses and right-turning vehicles now share the right lane. Just before southbound traffic gets a green light, the queue jump signal is activated, and buses can go through the intersection before other vehicles.

- Morning commute times saw a 5% improvement in on-time performance
- Morning and afternoon commute trips saw up to an 8-second travel time improvement

**TYPICAL APPLICATION**

On signalized streets with moderately frequent bus routes.

**POTENTIAL BENEFITS**

- Significantly reduce bus delay at signalized intersections.

**CHALLENGES**

- Right-turn lanes can pose an issue.

**BUS CORRIDOR TREATMENT RATING**

| Enhance Speed & Reliability | ☀️ ☀️
| Improve Safety | ☀️
| Improve Access & Connectivity | ☀️ ☀️ ☀️ ☀️

---

**Figure 16:** Queue Jump Example from NACTO
SUMMARY
SUMMARY

• National scan of transit priority treatments indicates a wide range of methods exist to improve bus speed and reliability and enhance the customer experience.

• Case study examples demonstrate benefits and cost-effectiveness of transit priority treatments when well-planned and implemented.

• Careful analysis of bus corridors and ‘hot spots’ needed to identify most promising alternatives.

• Pilots and demonstration projects can help build support and demonstrate efficacy.
APPENDIX B

Route Heat Maps
BUCKNER STATION

BUCKNER @ ELAM - N - FS

BUCKNER @ JACOBIE - N - NS

BUCKNER @ ROSEMONT - N - NS

BUCKNER @ DEL GARDEN - N - MB

BUCKNER @ DEL GARDEN - N - NS

BUCKNER @ ALTO GARDEN - N - NS

BUCKNER @ LOMA GARDEN - N - MB

BUCKNER @ MADDOX - N - NS

BUCKNER @ LAKE JUNE - N - FS

BUCKNER @ GROVECREST - N - MB

BUCKNER @ GROVECREST - N - NS

BUCKNER @ SECO - N - FS

BUCKNER @ STONEHURST - N - NS

BUCKNER @ TILLMAN - N - FS

BUCKNER @ HUTTIG - N - NS

BUCKNER @ BRUTON - N - NS

BUCKNER @ CORDELL - N - MB

BUCKNER @ JENNIE LEE - N - MB

BUCKNER @ JENNIE LEE - N - NS

BUCKNER @ HUME - N - FS

BUCKNER @ BLOSSOM - N - NS

BUCKNER @ BUCKNER MARKET PLACE - N - MB

BUCKNER @ SCYENE - N - FS

BUCKNER @ SCYENE CIR - N - FS

BUCKNER @ MILITARY - N - NS

BUCKNER @ NELSON - N - NS

BUCKNER @ ASTORIA - N - NS

BUCKNER @ HOYLE - N - NS

BUCKNER @ FORNEY - N - FS

BUCKNER @ MOBERLY - N - NS

BUCKNER @ EASTPOINT - N - NS

BUCKNER @ CLOVER HAVEN - N - NS

BUCKNER @ SAMUELL - N - MB

BUCKNER @ SAMUELL - N - FS

BUCKNER @ CHENAULT - N - MB

BUCKNER @ CHENAULT - N - FS

BUCKNER @ JOHN WEST - N - MB

BUCKNER @ PEAVY - N - MB

PEAVY @ WILLIAMS - N - MB

PEAVY @ GROSS - N - FS

PEAVY @ FERGUSON - N - NS

PEAVY @ OATES - N - NS

PEAVY @ PROVINCE - N - NS

PEAVY @ MILLMAR - N - NS

PEAVY @ ESTACADO - N - NS

PEAVY @ HERMOSA - N - MB

PEAVY @ GARLAND - N - MB

GARLAND @ PEAVY - N - FS

GARLAND @ FULLER - N - NS

GARLAND @ EASTON - N - NS

GARLAND @ LOCHMOND - N - NS

GARLAND @ LOCHWOOD - N - FS

JUPITER @ GARLAND - N - FS

JUPITER @ WYATT - N - FS

JUPITER @ RUPLEY - N - NS

JUPITER @ LANEWOOD - N - NS

JUPITER @ NORTHWEST - N - NS

NORTHWEST @ YEAGER - E - FS

NORTHWEST @ MCCREE - E - NS

NORTHWEST @ GARLAND - E - MB

SHILOH @ NORTHWEST - N - FS

SOUTH GARLAND TC
<table>
<thead>
<tr>
<th>Time (Hours)</th>
<th>Speed (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>0</td>
</tr>
<tr>
<td>2:00</td>
<td>5</td>
</tr>
<tr>
<td>4:00</td>
<td>10</td>
</tr>
<tr>
<td>6:00</td>
<td>15</td>
</tr>
<tr>
<td>8:00</td>
<td>20</td>
</tr>
<tr>
<td>10:00</td>
<td>25</td>
</tr>
<tr>
<td>12:00</td>
<td>30</td>
</tr>
<tr>
<td>14:00</td>
<td>35</td>
</tr>
<tr>
<td>16:00</td>
<td>40</td>
</tr>
<tr>
<td>18:00</td>
<td>45</td>
</tr>
<tr>
<td>20:00</td>
<td>50</td>
</tr>
<tr>
<td>22:00</td>
<td>55</td>
</tr>
<tr>
<td>24:00</td>
<td>60</td>
</tr>
<tr>
<td>26:00</td>
<td>65</td>
</tr>
</tbody>
</table>

**Conventions:**
- NS: North South
- MB: Main Base
- MB1: Main Base 1
- MB2: Main Base 2
- FS: Front Service
- N: North
- E: East
- S: South
- FS: Front Service
- MB: Main Base
- MB1: Main Base 1
- MB2: Main Base 2

**Stations:**
- Wlton Walker @ Singleton
- Singleton @ Jm
- Singleton @ Mike
- Singleton @ Lapsley
- Singleton @ Clymer
- Bernal/Singleton TL
- Singleton @ Mcbroom
- Singleton @ Riser
- Singleton @ Hammerly
- Singleton @ Vinson
- Singleton @ Peoria
- Singleton @ Pluto
- Singleton @ Norwich
- Singleton @ Esmalda
- Singleton @ Pointer
- Singleton @ Kingbridge
- Singleton @ Manila
- Singleton @ Fishtrap
- Singleton @ Coombsville
- Singleton @ Hampton
- Singleton @ Puget
- Singleton @ Harston
- Singleton @ Vilibig
- Singleton @ Navaro
- Singleton @ El Benito
- Singleton @ Borger
- Singleton @ Winnetka
- Singleton @ Sylvan
- Singleton @ Topeka
- Singleton @ Herbert
- Singleton @ Amonette
- Riverfront @ Continental
- Continental @ Ih 35
- Continental @ Houston
- Lamar @ Munger
- Lamar @ Ross
- Lamar @ Pacific
- Lamar @ Commerce
- Lamar @ Jackson
- Lamar @ Wood
- Lamar @ Ceremonial

**Colors:**
- Red: High Speed
- Blue: Low Speed
- Green: Average Speed

**Speed (mph):**
- 0:00 - 5:00 mph
- 5:00 - 10:00 mph
- 10:00 - 15:00 mph
- 15:00 - 20:00 mph
- 20:00 - 25:00 mph
- 25:00 - 30:00 mph
- 30:00 - 35:00 mph
- 35:00 - 40:00 mph
- 40:00 - 45:00 mph
- 45:00 - 50:00 mph
- 50:00 - 55:00 mph
- 55:00 - 60:00 mph
- 60:00 - 65:00 mph

**Colorscale:**
- Green: 0 mph
- Blue: 10 mph
- Red: 50 mph
APPENDIX C
Front Line Staff Input
<table>
<thead>
<tr>
<th>Bus Route</th>
<th>Dir.</th>
<th>Roadway</th>
<th>Limits</th>
<th>Detailed Description</th>
<th>Potential Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 WB/EB</td>
<td></td>
<td>Jefferson</td>
<td>Polk to Westmoreland</td>
<td>bus gets out of traffic lane at bus stops, requiring move back into lane</td>
<td>Bus Lane designation</td>
</tr>
<tr>
<td>9 WB/EB</td>
<td></td>
<td>Jefferson</td>
<td>Cockrell Hill intersection</td>
<td>traffic circle seems unsafe for everyone</td>
<td>Remove traffic circle; replace w signalized intersection</td>
</tr>
<tr>
<td>9 Both</td>
<td></td>
<td>Jefferson/Abrams/Richmond/Gaston</td>
<td>eastern end of line loop</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>Sunday evening detour or adjust schedule to reflect delays</td>
</tr>
<tr>
<td>9 WB/EB</td>
<td></td>
<td>Jefferson</td>
<td>Polk to Beckley</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>on-street parking or convert to parallel parking</td>
</tr>
<tr>
<td>13 Both</td>
<td></td>
<td>Cooper</td>
<td>Colonial to Harwood</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>13 Both</td>
<td></td>
<td>Harwood</td>
<td>Cooper to Pennsylvania</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>13 Both</td>
<td></td>
<td>Harwood</td>
<td>So. Garland Transit</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>15, 16, 18, 20, WB/SB</td>
<td></td>
<td>So. Garland Transit Center</td>
<td>Shiloh</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>17 SB/SB</td>
<td></td>
<td>Skillman</td>
<td>Southwestern to Abrams</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>18 NB/OB</td>
<td></td>
<td>Gus Thomasson</td>
<td>Ferguson</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>20 Both</td>
<td></td>
<td>Northwest Highway</td>
<td>full extent</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>remove on-street parking; reroute bus</td>
</tr>
<tr>
<td>20 Both</td>
<td></td>
<td>Multiple (Webb Chapel Ext, Larga, Webb Chapel)</td>
<td>Two back-to-back right turns made by buses that had right-turn radii that make right turns difficult to make safely and in a speedy manner.</td>
<td>reroute the bus north to Lombardy</td>
<td></td>
</tr>
<tr>
<td>20 EB</td>
<td></td>
<td>Multiple (Webb Chapel Ext, Larga, Webb Chapel)</td>
<td>Two back-to-back right turns made by buses that had right-turn radii that make right turns difficult to make safely and in a speedy manner.</td>
<td>reroute the bus north to Lombardy</td>
<td></td>
</tr>
<tr>
<td>20 WB</td>
<td></td>
<td>Boedeker</td>
<td>Northwest Highway</td>
<td>parking cars, slow cruising cars, people walking onto/ across street at mid-block Sunday evenings</td>
<td>reroute the bus north to Lombardy</td>
</tr>
<tr>
<td>20 EB</td>
<td></td>
<td>Boedeker</td>
<td>@ White Rock Lake Stn</td>
<td>heavy traffic on Northwest Highway slows down bus operations</td>
<td>reroute the bus north to Lombardy</td>
</tr>
<tr>
<td>20 EB</td>
<td></td>
<td>Northwest Highway</td>
<td>@ Green Line Xing</td>
<td>heavy traffic on Northwest Highway slows down bus operations</td>
<td>reroute the bus north to Lombardy</td>
</tr>
<tr>
<td>20 EB</td>
<td></td>
<td>Park Ln</td>
<td>Lamanda</td>
<td>heavy traffic on Northwest Highway slows down bus operations</td>
<td>reroute the bus north to Lombardy</td>
</tr>
<tr>
<td>20 EB</td>
<td></td>
<td>Northwest Highway</td>
<td>Hillcrest to Boedeker</td>
<td>heavy traffic on Northwest Highway slows down bus operations</td>
<td>reroute the bus north to Lombardy</td>
</tr>
<tr>
<td>22 Both</td>
<td></td>
<td>Forest Ln</td>
<td>Forest Ln Station to Audelia</td>
<td>heavy traffic on Northwest Highway slows down bus operations</td>
<td>reroute the bus north to Lombardy</td>
</tr>
<tr>
<td>Bus Route</td>
<td>Dir.</td>
<td>Roadway</td>
<td>Limits</td>
<td>Detailed Description</td>
<td>Potential Solution</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>--------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>22 EB</td>
<td></td>
<td>Preston Rd</td>
<td>Alpha to I-635</td>
<td>difficult to maneuver from right lane to three lanes over to left-turn lane within short distance in peak hour traffic when auto traffic is not accommodating</td>
<td>eliminate southernmost stop to allow bus to maneuver over to the left lane to make left-turn onto EB I-635 frontage roads</td>
</tr>
<tr>
<td>22 EB/WB</td>
<td></td>
<td>Forest Ln</td>
<td>not specified</td>
<td>too many stops on segments of Forest Lane slow down bus speeds</td>
<td>consolidate bus stops</td>
</tr>
<tr>
<td>22 EB/WB</td>
<td></td>
<td>Forest Ln</td>
<td>not specified</td>
<td>too many stops on segments of Forest Lane slow down bus speeds</td>
<td>consolidate bus stops</td>
</tr>
<tr>
<td>22 Both</td>
<td></td>
<td>Forest Lane</td>
<td>Forest Ln Stn to Forest/Jupiter</td>
<td>heavy traffic</td>
<td>implement bus lane between the two stations</td>
</tr>
<tr>
<td>22 EB</td>
<td></td>
<td>Verde Valley</td>
<td>Noel</td>
<td>tight radius makes completing a right-turn difficult</td>
<td>improve right-turn radius</td>
</tr>
<tr>
<td>22 EB</td>
<td></td>
<td>Verde Valley</td>
<td>Noel</td>
<td>on-street parking makes completing a right-turn difficult</td>
<td>Prohibit on-street parking by the intersection</td>
</tr>
<tr>
<td>22 EB</td>
<td></td>
<td>Forest</td>
<td>east of Audelia</td>
<td>there is a stop on a curve east of Audelia next to a driveway</td>
<td>relocate the bus stop or simply remove it</td>
</tr>
<tr>
<td>22 EB/WB</td>
<td></td>
<td>Forest Ln</td>
<td>Audelia</td>
<td>too many stops on segments of Forest Lane slow down bus speeds</td>
<td>extend bus stops</td>
</tr>
<tr>
<td>23 NB</td>
<td></td>
<td>Maple</td>
<td>Medical District</td>
<td>road north and south of this intersection are not well aligned</td>
<td>reroute the bus to stay on Lp 12, then I-30 til it reaches Chaulk Hill</td>
</tr>
<tr>
<td>23 SB</td>
<td></td>
<td>Haskell @ Ross</td>
<td></td>
<td>road north and south of this intersection are not well aligned</td>
<td>remove roundabout and replace with traditional signalized intersection</td>
</tr>
<tr>
<td>25 Both</td>
<td></td>
<td>Chalk Hill</td>
<td>@ Jefferston intersection</td>
<td>freight crossing between Singleton and I-30</td>
<td>reroute the bus to stay on Lp 12, then I-30 til it reaches Chaulk Hill</td>
</tr>
<tr>
<td>25 Both</td>
<td></td>
<td>Cockrell Hill</td>
<td></td>
<td>roundabout is unsafe for auto/bus travel thru the Cockrell Hill/Jefferson intersection</td>
<td>remove roundabout and replace with traditional signalized intersection</td>
</tr>
<tr>
<td>25 SB</td>
<td></td>
<td>Bernal</td>
<td>@ Chaulk Hill intersection</td>
<td>extended delay on Bernal/Chaulk Hill signalized intersection</td>
<td>improve signal timing to accommodate buses (TSP)</td>
</tr>
<tr>
<td>27 NB to EB</td>
<td></td>
<td>Ridgecrest</td>
<td>Fair Oaks</td>
<td>to EB Fair Oaks takes a long time.</td>
<td>transit signal priority for bus movements</td>
</tr>
<tr>
<td>28 EB</td>
<td></td>
<td>Singleton</td>
<td>west of Lapsley</td>
<td>bus layover on Singleton west of Lapsley obstructs sight distance for NB Lapsley to WB Singleton drivers</td>
<td>shift layover to occur at Singleton/Bernal PTL or shift stop/shelter further west of Lapsley</td>
</tr>
<tr>
<td>38 WB/EB</td>
<td></td>
<td>Ledbetter</td>
<td>Bonnie View, Marsalis timepoints</td>
<td>padded schedule/timepoints requires slow move east-west across Ledbetter in both directions</td>
<td>adjust schedule (tighten internal timepoints; add layover time)</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>Wilhurt</td>
<td>Sunnyvale to Bonnie View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 Both</td>
<td></td>
<td>Marsalis/Ewing</td>
<td>Clarendon to Winters</td>
<td>This route takes a circuitous path off of its primary roadway to allow access to the Dallas Zoo, to serve Winters.</td>
<td>Streamline the route to eliminate unnecessary segments and reduce overall run time. shift bus stop north to allow bus operators sufficient space to maneuver to a left-turn position OR shift the bus stop to past the turning movement to Laureland</td>
</tr>
<tr>
<td>45 SB</td>
<td></td>
<td>Marsalis @Laureland</td>
<td></td>
<td>Bus stop is located at the end of a wide 2-lane odaway, and it is difficult to make a left-turn from that position because drivers in the same direction may not allow the bus to get over into the other lane.</td>
<td>reroute NB run into facility for safer access to rail station or provide pedestrian crossing prohibit parking on one side of the street and at the bus stops add traffic signal that only stops traffic when buses are present, but is still synchronized with adjacent signals to allow for continued N-S corridor progression</td>
</tr>
<tr>
<td>47 NB</td>
<td></td>
<td>Tyler @ Tyler/Vernon Station</td>
<td></td>
<td>NB #47 riders alighting at bus stop adjacent to Tyler/Vernon Station must make dangerous crossing of Tyler St to Station; no signal protects them. narrow roadway with on-street parallel parking on both sides of the street makes bus travel through here slow and unsafe</td>
<td>reroute NB run into facility for safer access to rail station or provide pedestrian crossing prohibit parking on one side of the street and at the bus stops add traffic signal that only stops traffic when buses are present, but is still synchronized with adjacent signals to allow for continued N-S corridor progression</td>
</tr>
<tr>
<td>47 Both</td>
<td></td>
<td>Leigh Ann</td>
<td>Kimwood to Wheatland</td>
<td>unsignalized intersection prevents left-turns to be made or to be made with protected signals, so circuitous and lengthy routing occurs</td>
<td>reroute NB run into facility for safer access to rail station or provide pedestrian crossing prohibit parking on one side of the street and at the bus stops add traffic signal that only stops traffic when buses are present, but is still synchronized with adjacent signals to allow for continued N-S corridor progression</td>
</tr>
<tr>
<td>57 SB</td>
<td></td>
<td>Westmoreland</td>
<td>@Westmoreland Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Route</td>
<td>Dir.</td>
<td>Roadway</td>
<td>Limits</td>
<td>Detailed Description</td>
<td>Potential Solution</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1 SB</td>
<td>SB</td>
<td>Pearl</td>
<td>@ Pacific/Gaston intersection</td>
<td>difficult to maneuver from right bus bay to three lanes over to left-turn lane within 150’ in peak hour traffic when auto traffic is not accommodating</td>
<td>slide #1 bus bay north</td>
</tr>
<tr>
<td>1 SB</td>
<td>SB</td>
<td>Pearl</td>
<td>@ Pacific/Gaston intersection</td>
<td>difficult to maneuver from right bus bay to three lanes over to left-turn lane within 150’ in peak hour traffic when auto traffic is not accommodating</td>
<td>slide #1 bus bay north</td>
</tr>
<tr>
<td>28 SB</td>
<td>SB</td>
<td>Lamar</td>
<td>San Jacinto to Pacific</td>
<td>SB DART PD parks on Lamar between San Jacinto and Pacific hindering SB bus operators from accessing riders waiting for them at bus stop WB buses turning SB onto Houston are one of two turning lanes, turning into two narrow lanes.....Issue(s): 1) Stop bar for NB Houston drivers is not far back, forcing WB turning drivers (on inside-most lane) to slow down and swing wide 2) For WB turning drivers on second lane, they must also swing wide which is complicated by the fact that tourist trolleys are parked there at different times of the day.</td>
<td>(1) move bus stop line for NB Houston left-turn lane (2) prohibit tourist trolleys from parking on SBHouston between Elm and Main Streets</td>
</tr>
<tr>
<td>9, 45, 47 WB</td>
<td>WB</td>
<td>Elm St</td>
<td>at Houston St intersection</td>
<td>insufficient time/space for bus to make NB Colorado to WB Ft Worth Ave left-turn</td>
<td>Upgrade signal to include protected left-turn movement signal upgrade: accommodate left-turn signal only during the cycles when a left-turn bus approaches smooth out radius or establish NB stop line that accommodates wide turns prohibit on-street parking on one side of the street OR within 50’ north and south of bus stops</td>
</tr>
<tr>
<td>102 NB</td>
<td>NB</td>
<td>Colorado</td>
<td>@ Fort Worth Avenue intersection</td>
<td>insufficient time/space for bus to make NB Colorado to WB Ft Worth Ave left-turn</td>
<td>Upgrade signal to include protected left-turn movement signal upgrade: accommodate left-turn signal only during the cycles when a left-turn bus approaches smooth out radius or establish NB stop line that accommodates wide turns prohibit on-street parking on one side of the street OR within 50’ north and south of bus stops</td>
</tr>
<tr>
<td>104 NB</td>
<td>NB</td>
<td>EB Illinois to SB</td>
<td>@ Malcolm X/MLK intersection</td>
<td>unprotected left-turn at this intersection results in waiting several cycles</td>
<td>During the cycles when a left-turn bus approaches smooth out radius or establish NB stop line that accommodates wide turns prohibit on-street parking on one side of the street OR within 50’ north and south of bus stops</td>
</tr>
<tr>
<td>109 SB</td>
<td>SB</td>
<td>Beckley</td>
<td>@ Illinois/SB Beckley intersection</td>
<td>narrow roadway, on-street parking 4-lane divided roadway, where one-side is closed. Trees, shrubs, are overgrown, obstruct travel on EB lane</td>
<td>trim shrubs on EB direction</td>
</tr>
<tr>
<td>114 CCW</td>
<td>CCW</td>
<td>Easter</td>
<td>Kiest to Overton</td>
<td>narrow roadway, on-street parking 4-lane divided roadway, where one-side is closed. Trees, shrubs, are overgrown, obstruct travel on EB lane</td>
<td>Move turn lane on St. Augustine back by 25’</td>
</tr>
<tr>
<td>212 EB</td>
<td>EB</td>
<td>Woodmeadow</td>
<td>west of La Prada</td>
<td>difficult to turn right from Lake June onto St. Augustine bus stop on WB I-30 frontage just east of Highland/St. Francis does not allow WB bus operator to enter HOV Lane near Jim Miller entrance because the entrance to mainlanes is too close to HOV entrance (1,200’), where closer to 3,000’ is needed to weave over 3 freeway mainlanes</td>
<td>Upgrade signal to include protected left-turn movement signal upgrade: accommodate left-turn signal only during the cycles when a left-turn bus approaches smooth out radius or establish NB stop line that accommodates wide turns prohibit on-street parking on one side of the street OR within 50’ north and south of bus stops</td>
</tr>
<tr>
<td>218 CIW</td>
<td>CIW</td>
<td>Lake June</td>
<td>St. Augustine</td>
<td>difficult to turn right from Lake June onto St. Augustine bus stop on WB I-30 frontage just east of Highland/St. Francis does not allow WB bus operator to enter HOV Lane near Jim Miller entrance because the entrance to mainlanes is too close to HOV entrance (1,200’), where closer to 3,000’ is needed to weave over 3 freeway mainlanes</td>
<td>Upgrade signal to include protected left-turn movement signal upgrade: accommodate left-turn signal only during the cycles when a left-turn bus approaches smooth out radius or establish NB stop line that accommodates wide turns prohibit on-street parking on one side of the street OR within 50’ north and south of bus stops</td>
</tr>
<tr>
<td>224 WB</td>
<td>WB</td>
<td>I-30 fntg road/HOV Lane n bus stop</td>
<td>near St. Francis/Highland</td>
<td>easternmost stop on Alpha before left-turn onto NB Montfort is too close to intersection to weave over to make turn. tight right turn radius, where making wide right turns are difficult to make and requires traffic to let up</td>
<td>remove the bus stop in question, which we understand was originally intended for (2) other routes that used to go thru or right possibly smooth out the radius</td>
</tr>
<tr>
<td>227 EB/NB</td>
<td>EB</td>
<td>Alpha</td>
<td>west of Montfort</td>
<td>easternmost stop on Alpha before left-turn onto NB Montfort is too close to intersection to weave over to make turn. tight right turn radius, where making wide right turns are difficult to make and requires traffic to let up</td>
<td>possibly smooth out the radius</td>
</tr>
<tr>
<td>229 WB</td>
<td>WB</td>
<td>Belt Line</td>
<td>@ Denton Dr</td>
<td>large pothole in front of Apartments in right lane</td>
<td>fill in pothole</td>
</tr>
<tr>
<td>231 WB</td>
<td>WB</td>
<td>Walnut Hill</td>
<td>east of Belt Line (before Fire Stn</td>
<td>large pothole in front of Apartments in right lane</td>
<td>fill in pothole</td>
</tr>
<tr>
<td>232 EB/WB</td>
<td>EB</td>
<td>Trinity Mills Station entrance/exit of Trinity Mills Stn</td>
<td>extended delay at entrance/exit of Station signalized intersection takes too long for NB/SB movement into and out of Forest/Jupiter Station</td>
<td>improve signal timing to accommodate buses (TSP) adjust signal phasing to accomodate bus movements (TSP)</td>
<td></td>
</tr>
<tr>
<td>245 NB/SB</td>
<td>NB</td>
<td>Barnes</td>
<td>@ Forest Ln intersection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Route</td>
<td>Dir.</td>
<td>Roadway</td>
<td>Limits</td>
<td>Detailed Description</td>
<td>Potential Solution</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>245 NB</td>
<td></td>
<td>Shiloh</td>
<td>Forest</td>
<td>short left-turn signal doesn't last long enough for buses</td>
<td>extend green time for left-turn movements</td>
</tr>
<tr>
<td>247 SB</td>
<td></td>
<td>Jupiter</td>
<td>Kingsley</td>
<td>short green time for SB Jupiter traffic turning left to Kingsley is too short</td>
<td>extend green time</td>
</tr>
<tr>
<td>227, 233 WB All</td>
<td>Valley View @ Denton St intersection</td>
<td>NA</td>
<td>NA</td>
<td>lack of left-turn signal can result in extended delays; sit thru a couple of cycles</td>
<td>add left-turn signal phase</td>
</tr>
<tr>
<td>GoPass, Tap Card All</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>lack of quiet place at Northwest facility</td>
<td>establish a quiet place at Northwest facility</td>
</tr>
<tr>
<td>Multiple EB/WB</td>
<td>Commerce, Elm extent of Downtown Dallas</td>
<td>All</td>
<td>All</td>
<td>There is delay associated with GoPass and Tap Cards to confirm they're active</td>
<td>repaint bus lane symbols; penalize violators</td>
</tr>
<tr>
<td>Multiple All</td>
<td>All</td>
<td>All</td>
<td>All</td>
<td>auto drivers (SOV, Uber, parking, etc.) continuously violate the bus-only</td>
<td>reduce/simplify the number of options</td>
</tr>
<tr>
<td>Multiple NB</td>
<td>Ferguson Rd Shiloh</td>
<td></td>
<td></td>
<td>Left-turn signal on NB Ferguson onto NB Shiloh doesn't always appear; affects multiple routes as they are getting into service bound for So Garland Transit Center</td>
<td>provide dedicated left-turn arrow with sufficient time</td>
</tr>
<tr>
<td>Routes out of service Both</td>
<td>Northwest Highway I-35 to Harry Hines</td>
<td></td>
<td></td>
<td>although not a segment of routes, buses going into and coming out of service must contend with faded lane striping, which results in confusing, unsafe conditions</td>
<td>restripe lanes</td>
</tr>
</tbody>
</table>
APPENDIX D
Route Evaluation and Toolbox Recommendation Summaries
Route 1 – Malcolm X-Maple

TERMINI
Samoa & Bexar
SWMD/Parkland Station

FREQUENCY
15 min Peak
15 min Midday

AVERAGE DAILY BOARDINGS
1,245

ROUTE CONNECTIONS

KEY DESTINATIONS
Downtown Dallas
Carpenter Park
Baylor University Medical Center Station
Malcolm X Transfer Location
Southwestern Medical District
Parkland Memorial Hospital

LEGEND
Average Daily Boardings
○ 5 or fewer boardings
○ 6 – 10 boardings
○ 11 – 50 boardings
○ 51 – 100 boardings
○ Over 100 boardings
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>LOW</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>LOW</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>LOW</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

**SCORES BY SEGMENT**

- **Route 1 - Malcolm X-Maple**
  - **SB**
  - **NB**
The northernmost part of Route 1 serves the UTSW Medical District. A new signal that accommodates protected left turns and Transit Signal Priority is recommended at the Bengal St & Medical District Dr intersection. A queue jump and TSP are also recommended at Cedar Springs & Pearl, as well as stop consolidation along Maple Ave.

**RECOMMENDATIONS**

**TOOLBOX ICON DEFINITION**

- **TRANSIT SIGNAL PRIORITY**
- **QUEUE JUMP**
- **STOP CONSOLIDATION**
- **NEW SIGNAL**
- **TURN RADIUS**
RECOMMENDATIONS

Transit Signal Priority at Woodall Rogers Freeway and Pearl St near Klyde Warren Park would create a queue jump for transit vehicles moving through the intersection.

Trips within the downtown area show a high need for CORE improvements and should be evaluated as part of future analysis.
RECOMMENDATIONS

A new signal at Malcolm X Blvd and Lawrence St would provide protected left turns for northbound vehicles. The route could also be rerouted to Elsie Faye Higgins St, where Transit Signal Priority should be provided.

TOOLBOX ICON DEFINITION

NEW SIGNAL
TRANSIT SIGNAL PRIORITY
ROUTE DESIGN
Route 3 – Ross

TERMINI
SMU/Mockingbird Station
West Transfer Center

AVERAGE DAILY BOARDINGS
960

ROUTE CONNECTIONS
Routes 17, 23, 105, 205, 207, 209, 239, 249, 440, 442, Park Cities/ Lakewood GoLink, Red Line, Blue Line, Orange Line

KEY DESTINATIONS
Earl Cabell Federal Building
Lower Greenville
Southern Methodist University
Thanksgiving Center

FREQUENCY
15 min Peak
15 min Midday

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>LOW</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>LOW</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>LOW</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>LOW</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

**SCORES BY SEGMENT**

![Route 3 - Ross Score Chart](chart-url)
RECOMMENDATIONS
Route 3 serves SMU at its northern terminal. Bus stops at Greenville Ave and Mockingbird Ln can be relocated closer to the intersection to more easily facilitate transfers between Routes 3 and 17. Stops along Matilda St could also be consolidated based on ridership to make service more efficient, and the southbound route could also be realigned from Winton to Mockingbird. The right turn radius from eastbound Mockingbird to southbound Matilda should be adjusted to better accommodate buses.

TOOLBOX ICON DEFINITION
- BUS STOP LOCATIONS
- STOP CONSOLIDATION
- TURN RADIUS
- ROUTE DESIGN
It is also recommended that the eastbound stop at Ross & Hope shift to the near side of the intersection. Pavement maintenance is also recommended on Ross Ave between Greenville and US 75.

There are no recommendations made for other segments of this route.

**TOOLBOX ICON DEFINITION**

**RECOMMENDATIONS**
Route 5 – Love Field Shuttle

TERMINI
Inwood/Love Field Station
Dallas Love Field Airport

FREQUENCY
15 min Peak
15 min Midday

AVERAGE DAILY BOARDINGS
217

ROUTE CONNECTIONS
Routes 103, 207, 222, Park Cities
GoLink, Green Line, Orange Line

KEY DESTINATIONS
Dallas Love Field Airport
University of Texas Southwestern Medical District
Dallas Love Field Car Rental Branches

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
## Scores by Segment

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>
RECOMMENDATIONS

Route 5 connects Inwood/Love Field Station to Dallas Love Field Airport. Transit Signal Priority would improve efficiency for vehicles turning left at Cedar Springs Rd and Inwood Rd.

There are no recommendations made for other segments of this route.
Route 9 – Jefferson Gaston

TERMINI
Cockrell Hill Transfer Location
Richmond & Abrams

AVERAGE DAILY BOARDINGS
2,128

ROUTE CONNECTIONS
Routes 1, 18, 23, 25, 45, 47, 57, 101, 109, 219, 221, 226, Red Line, Blue Line, Green Line, Orange Line

KEY DESTINATIONS
Majestic Theatre
Baylor University Medical Center
AT&T Discovery District
Dallas College El Centro Campus
Downtown Oak Cliff

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
## Route 9 - Jefferson Gaston

### Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### SCORES BY SEGMENT

[Diagram showing scores by segment with color coding for low to high]
Route 9 connects the Cockrell Hill and Lakewood Heights neighborhoods. A new signal with a protected left turn would benefit turning vehicles at Marsalis Ave and Colorado Blvd after the route crosses south over the Trinity River. At Jefferson and Cockrell Hill, the traffic circle should be replaced with a traditional traffic signal.

To avoid special events, the route could be diverted away from Jefferson Blvd between Zang Blvd and Tyler St on Sunday evenings or angled parking could be restricted in that area.

On Jefferson between Hampton Rd and Tyler St, a dedicated bus lane or bus bulbs could be established where the former third travel lane was restricted from use.

**RECOMMENDATIONS**

**TOOLBOX ICON DEFINITION**

- NEW SIGNAL
- BUS BULB
- PARKING REMOVAL
- ROUTE DESIGN
- DEDICATED BUS LANE
Route 9 – Jefferson Gaston

Route 9 terminates in the east at the Lakewood Shopping Center near White Rock Lake. A new signal with Transit Signal Priority at Abrams Rd and Gaston Ave would benefit vehicles at the start of westbound trips. The turning radii at Gaston Ave & Richmond Ave and Abrams Rd & Richmond Ave should be adjusted to better accommodate buses, or the route should be realigned to avoid tight right turns.

There are no recommendations made for other segments of this route.
Route 13 – Ervay

TERMINI
West Transfer Center
MLK Jr Station/JB Jackson Transit Center

AVERAGE DAILY BOARDINGS
1,484

ROUTE CONNECTIONS
Routes 1, 23, 104, 216, South Dallas GoLink, Green Line, Orange Line, Blue Line, Red Line

KEY DESTINATIONS
Paul L. Dunbar Learning Center
Frazier House
Dallas College El Centro Campus
Malcolm X Transfer Location
Hatcher Station

LEGEND
Average Daily Boardings
5 or fewer boardings
6 – 10 boardings
11 – 50 boardings
51 – 100 boardings
Over 100 boardings

FREQUENCY
15 min Peak
20 min Midday
## Route 13 – Ervay

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### Scores by Segment

[Diagram showing scores for different segments of Route 13 – Ervay]
RECOMMENDATIONS

On-street parking should be prohibited on Cooper Dr and Harwood St to better accommodate buses.

TOOLBOX ICON DEFINITION

- PARKING REMOVAL
RECOMMENDATIONS

The portion of the route on Elsie Faye Heggins St between Junction St and Lyon St should be further examined to determine possible causes of consistently slow travel times.

There are no recommendations made for other segments of this route.
Route 15 – Buckner

**TERMINI**
- South Garland Transit Center
- Buckner Station

**FREQUENCY**
- 15 min Peak
- 20 min Midday

**AVERAGE DAILY BOARDINGS**
1,802

**ROUTE CONNECTIONS**
Routes 16, 18, 20, 30, 203, 204, 212, 214, 216, 218, 220, 224, 242, 245, 247, 251

**KEY DESTINATIONS**
- Dallas College Pleasant Grove Center
- White Rock Market Place

**LEGEND**
- Average Daily Boardings
  - 5 or fewer boardings
  - 6 – 10 boardings
  - 11 – 50 boardings
  - 51 – 100 boardings
  - Over 100 boardings
## Route 15 - Buckner

### Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### Scores by Segment

- **SOUTH GARLAND TRANSIT CENTER**
- **JUPITER & GARLAND**
- **PEAVY & FERGUSON**
- **BUCKNER & JOHN WEST RD**
- **BUCKNER & MILITARY**
- **BUCKNER & LAKE JUNE**
- **BUCKNER STATION**

Scoring: **LOW** to **HIGH**
RECOMMENDATIONS

The northern end of Route 15 begins in South Garland. Transit Signal Priority at Shiloh Rd would improve efficiency of vehicles entering and exiting South Garland Transit Center.

TOOLBOX ICON DEFINITION

TRANSIT SIGNAL PRIORITY
Route 15 continues south on Peavy Rd and Buckner Blvd. The southbound vehicles turning onto Buckner would be supported by a queue jump lane in reallocated right-of-way. Relocating bus stops closer to the intersection at Buckner and John West Rd would also facilitate easier transfers between Routes 15 and 18.
RECOMMENDATIONS

Route 15 serves the Elam neighborhood at its southern end. Relocating bus stops at Buckner and Lake June Rd would facilitate transfers between Routes 15 and 30, while a queue jump will help move northbound transit vehicles through the intersection more efficiently. Transit Signal Priority at Buckner and Elam Rd would help avoid missed connections at Buckner Station.

TOOLBOX ICON DEFINITION

- **Bus Stop Locations**
- **Transit Signal Priority**
- **Queue Jump**
Route 16 – Ferguson

**TERMINI**
- West Transfer Center
- South Garland Transit Center

**FREQUENCY**
- 15 min Peak
- 20 min Midday

**AVerage Daily Boardings**
1,730

**ROUTE CONNECTIONS**
- Routes 3, 13, 15, 18, 20, 103, 105, 203, 204, 207, 209, 212, 214, 239, 242, 245, 247, 249, 251, 305

**KEY DESTINATIONS**
- Casa View Shopping Center
- Dallas College El Centro Campus
- Amberton University

**LEGEND**
- Average Daily Boardings
  - 5 or fewer boardings
  - 6 – 10 boardings
  - 11 – 50 boardings
  - 51 – 100 boardings
  - Over 100 boardings
## Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### Scores by Segment

- **Low (Green)**: West Transfer Center, ELM & Harwood, Cesar Chavez & Marilla, Ferguson & Highland, Ferguson & Oates, Ferguson & Shiloh
- **Medium (Yellow)**: Woodmeadow & Ferguson, South Garland Transit Center
- **High (Red)**: EB, WB
Route 16 connects south Garland with Downtown Dallas, running express on I-30 between Ferguson and Downtown Dallas. Transit Signal Priority at Towngate Blvd and Northwest Hwy will help vehicles turning left to start southbound trips, and TSP along with a queue jump at Ferguson Rd will prioritize transit vehicles moving through the intersection at the LBJ Freeway.
RECOMMENDATIONS

Accommodations could be made to allow buses to use the HOV reversible lane when entering I-30 from Ferguson Rd.
Route 17 – Skillman

TERMINI
LBJ/Central Station
SMU/Mockingbird Station

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
1,912

ROUTE CONNECTIONS
Routes 3, 20, 22, 105, 200, 204, 209, 242, 243, 249, 413, 417, 419, 440, 442, North Central Dallas
GoLink, Park Cities Lakewood
GoLink

KEY DESTINATIONS
Southern Methodist University
Medallion Shopping Center
Lake Highlands Station
LBJ/Skillman Station
Dallas College Richland Campus

LEGEND
Average Daily Boardings
○ 5 or fewer boardings
○ 6 – 10 boardings
○ 11 – 50 boardings
○ 51 – 100 boardings
○ Over 100 boardings
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### SCORES BY SEGMENT

![Map of scores by segment](image-url)
RECOMMENDATIONS

Route 17 serves North Central Dallas and Lake Highlands. Transit Signal Priority at the intersection of Markville Dr and Greenville Ave will facilitate easier left turns for vehicles entering and leaving LBJ/Central Station. A left turn lane could also be created at the same intersection using the existing median to minimize LOS impacts to autos.

TOOLBOX ICON DEFINITION

- **TRANSIT SIGNAL PRIORITY**
- **ROADWAY CHANNELIZATION**
RECOMMENDATIONS

Relocating bus stops closer to the intersection of Audelia Rd and Forest Ln will make transfers more convenient between Routes 17 and 22. Developing a short transit-only acceleration lane at the LBJ/Skillman Station exit would also allow buses to exit freely, stop at rail tracks, and get up to speed before merging onto the 635 frontage road.

TOOLBOX ICON DEFINITION

- **BUS STOP LOCATIONS**: Represents bus stop locations along the route.
- **DEDICATED BUS LANE**: Indicates dedicated bus lanes for improved efficiency.
- **ROADWAY CHANNELIZATION**: Marks changes in road layout to enhance safety and flow.
**RECOMMENDATIONS**

A new signal with a protected left turn at the intersection of Southwestern Blvd and Amesbury Dr could mitigate potential safety issues and reduce delays in the southbound direction. Bus stops along this section of the route could also be consolidated to improve efficiency and travel times.

There are no recommendations made for other segments of this route.

**TOOLBOX ICON DEFINITION**

- **NEW SIGNAL**
- **STOP CONSOLIDATION**
Route 18 – Samuell

**TERMINI**
- West Transfer Center
- South Garland Transit Center

**AVERAGE DAILY BOARDINGS**
- 1,951

**ROUTE CONNECTIONS**

**KEY DESTINATIONS**
- Baylor College Eastfield Campus
- Baylor University Medical Center
- Deep Ellum
- Samuell-Grand Park

**FREQUENCY**
- 15 min Peak
- 20 min Midday

**LEGEND**
- Average Daily Boardings
  - 5 or fewer boardings
  - 6 – 10 boardings
  - 11 – 50 boardings
  - 51 – 100 boardings
  - Over 100 boardings
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>LOW</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>LOW</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>LOW</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

**SCORES BY SEGMENT**

- **LOW**
  - ELM & GRIFFIN
  - ELM & HARWOOD
  - MAIN & PEAK
  - HUNNICUT & SAMUELL
  - BUCKNER & JOHN WEST RD
  - BUCKNER & JOHN WEST RD
  - ELM & HARWOOD
  - ELM & GRIFFIN

- **MEDIUM**
  - BAYLOR STATION
  - HASKELL & FITZHUGH
  - SAMUELL & JIM MILLER
  - EASTFIELD COLLEGE
  - S GARLAND TRANSIT CENTER

- **HIGH**
  - CENTERVILLE & SHILOH
  - GUS THOMASSON & SHILOH
  - WEST TRANSFER CENTER
  - WEST TRANSFER CENTER

- **EB**
  - EB
  - EB

- **WB**
  - WB
  - WB
Route 18 connects South Garland Transit Center to Downtown Dallas. Transit Signal Priority at the western entrance of the South Garland Transit Center would help speed up vehicles turning in and out of the transit center on many routes. Relocating bus stops at Shiloh Rd and Northwest Hwy would also improve transfers between Routes 15, 18, and 20. A new signal with a protected left turn phase for vehicles at Shiloh Rd and Centerville Rd would reduce delays and increase safety. Right turn overlap phase for buses turning from Joaquin Dr to Ferguson Rd should be considered, as well as the removal of the Ferguson at Joaquin S bus stop. The turning radius at Ferguson Rd and Gus Thomasson Rd should also be improved to accommodate northbound transit vehicles.

**RECOMMENDATIONS**

**TOOLSBOX ICON DEFINITION**

- **Bus Stop**
- **Signal Phase**
- **Turn Radius**
- **New Signal**
The bus stop at Shiloh north of Oates could be relocated to minimize buses needing to merge to the left lane in order to turn onto Oates. A queue jump could also be built in unused right-of-way at John West Rd and La Prada Dr. New signals with TSP should also be added at Carol Brown Rd & La Prada Dr and Senate St & Dilido Rd. Transit Signal Priority at Jim Miller Rd & Samuell Blvd and a new signal with a queue jump at Highland Rd & Hunnicut Rd would improve speed and reliability for turning vehicles.

Consolidating bus stops on Highland Rd between Jim Miller Rd and Hunnicut Rd would also improve efficiency for vehicles traveling on this segment. Bus bulbs should also be considered for this portion of the route to minimize delay re-entering traffic. The bus stops at Samuell Blvd and Ferguson Rd may also be relocated to reduce weaving required of buses traveling in the through lane.
RECOMMENDATIONS

Transit Signal Priority at the intersection of Dolphin Rd and Samuell Blvd would improve reliability for left-turning vehicles, while consolidating bus stops along Haskell Ave would also improve efficiency and travel times for vehicles approaching and leaving Downtown. The bus stop at Haskell Ave and E Grand Ave may also be relocated to reduce weaving required of buses traveling in the through lane.

TOOLBOX ICON DEFINITION

- **Transit Signal Priority**
- **Stop Consolidation**
- **Bus Stop Locations**
TERMINI
Bachman Station
South Garland Transit Center

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
1,830

ROUTE CONNECTIONS
Routes 15, 16, 18, 27, 203, 204, 212, 213, 233, 237, 242, 247, 251, 402, Lakewood GoLink, Lake Highlands GoLink, Red Line, Blue Line

KEY DESTINATIONS
Park Lane Station
White Rock Station
Dallas Children’s Theater
Medallion Shopping Center
Amberton University
Bachman Lake Park
White Rock Lake Park
NorthPark Center

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 - 10 boardings
- 11 - 50 boardings
- 51 - 100 boardings
- Over 100 boardings
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>HIGH</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

**SCORES BY SEGMENT**

[Diagram showing scores by segment]
RECOMMENDATIONS

Route 20 runs east/west between Bachman Station and South Garland Transit Center. Adding a protected left turn signal at Denton Rd and Webb Chapel Rd or realigning the route to avoid Community Dr would help vehicles enter and exit Bachman Station more efficiently.

To address tight right turns to and from Larga Dr, the turning radii at Webb Chapel Rd and Webb Chapel Extension should be adjusted or the route should be realigned to continued north to Lombardy Ln.

Relocating bus stops to the far side of the intersection at Northwest Hwy & Webb Chapel and Northwest Hwy & Chapel Valley Rd will help vehicles move through the area more efficiently. Adding queue jumps on Northwest Hwy at Midway Rd and Douglas Ave will also move transit vehicles through the intersection faster as well.

TOOLBOX ICON DEFINITION

SIGNAL PHASE MODIFICATION
ROUTE DESIGN
BUS STOP LOCATIONS
TURN RADIUS
QUEUE JUMP
STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE
Route 20 – Northwest Hwy

RECOMMENDATIONS

Route 20 continues on Northwest Hwy, where improved green light timing would benefit transit vehicles traveling east toward Boedecker Dr.

The eastbound stop at Northwest Hwy and Airline Rd should be removed or shifted to the west. Transit Signal Priority and an acceleration lane should be considered at Boedecker Dr and Northwest Hwy for westbound buses. The right turn radius at Park Ln and Boedecker St should also be improved to accommodate transit vehicles, and the outside through lane along the Northwest Highway interchange could also be converted to a bus-only lane. Alternatively, the route could be realigned between Boedecker Dr & Northwest Hwy and Park Lane Station to use Caruth Haven Ln and Greenville Ave to get to Park Lane Station to avoid slow downs on Boedecker Dr and Park Ln.

To improve reliability along Larmanda St, bus bulbs should be added or the route should be moved to a nearby street. Adding TSP at the entrances to White Rock Station and Park Lane Station would improve reliability for vehicles turning into and out of stations.

Building an acceleration lane would also help buses moving from Skillman St onto Northwest Hwy get up to speed before merging with general traffic.

TOOLBOX ICON DEFINITION

- SIGNAL PHASE MODIFICATION
- ROADWAY CHANNELIZATION
- TRANSIT SIGNAL PRIORITY
- DEDICATED BUS LANE
- TURN RADIUS
- BUS BULB
- ROUTE DESIGN
- STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE
RECOMMENDATIONS

Adding Transit Signal Priority at Shiloh Rd would help improve reliability of routes entering and exiting the South Garland Transit Center. Adding TSP at the entrances to White Rock Station would improve reliability for vehicles turning into and out of stations.

Additionally, stop consolidation is recommended along the entirety of Route 20.
Route 22 - Forest Lane

TERMINI
Addison Transit Center
Downtown Garland Station

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
2,987

ROUTE CONNECTIONS
Routes 17, 200, 202, 203, 224, 227, 237, 238, 239, 241, 243, 245, 247, 250, 251, Medical City Shuttle, Red Line, Blue Line, Orange Line

KEY DESTINATIONS
Forest Lane Station
Forest/Jupiter Station
Galleria Dallas
Valley View Mall/Dallas Midtown
Medical City Hospital
Texas Instruments
Addison Airport

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
## Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

## SCORING BY SEGMENT

[Diagram showing routes and scores for different segments]
Route 22 connects Addison and Garland. A bus-activated signal at the Addison Transit Center entrance would speed up vehicles entering and exiting, and a potential queue jump on Verde Valley Ln would help move transit vehicles through the intersection with the Dallas North Tollway faster. The right turn radius at Verde Valley and Noel Rd should be improved to accommodate eastbound buses. Removing street parking on southbound Noel Rd would also enhance transit operations and improve access to stops along the route.

**RECOMMENDATIONS**

**TOOLBOX ICON DEFINITION**

- **Queue Jump**
- **Transit Signal Priority**
- **Parking Removal**
- **Turn Radius**

**STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE**
RECOMMENDATIONS

From Preston, Route 22 travels along the I-635 frontage road to Park Central Dr then remains on Forest Ln. The bus stop on Preston Rd just north of I-635 should be removed or relocated. On-street parking on Park Central Dr in front of Medical City Dallas Hospital should also be eliminated.

The area around Forest Lane Station sees continually slow speeds, which Transit Signal Priority at the station entrance and at Forest Ln & TI Blvd would improve. A queue jump adjacent to the median would also help vehicles turning from Park Central Dr onto Forest Ln and moving through the I-635 & Forest Ln intersection. Relocating bus stops at Forest Ln and Audelia Rd would also facilitate easier transfers between Routes 17 and 22.

TOOLBOX ICON DEFINITION

- QUEUE JUMP
- TRANSIT SIGNAL PRIORITY
- BUS STOP LOCATIONS
- PARKING REMOVAL
- STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE
Continuing eastward, Route 22 serves the Forest/Jupiter Station and Downtown Garland Station. A bus-activated signal at the entrance to Downtown Garland Station would improve reliability for transferring riders. Bus stop optimization and consolidation opportunities exist along entire route based on spacing and ridership, and would be particularly beneficial along Forest Ln where speeds are slower.
Route 23 – Haskell

TERMINI
SWMD/Parkland Station
MLK Jr Station/J.B. Jackson Transit Center

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
1,303

ROUTE CONNECTIONS

KEY DESTINATIONS
Cityplace/Uptown Station
Fair Park Station
Baylor University Medical Center
Baylor Medical Center Uptown
Parkland Hospital
Children’s Medical Center

LEDGE
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
### Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td><strong>HIGH</strong></td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td><strong>MEDIUM</strong></td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td><strong>MEDIUM</strong></td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td><strong>MEDIUM</strong></td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td><strong>LOW</strong></td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td><strong>MEDIUM</strong></td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td><strong>MEDIUM</strong></td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td><strong>LOW</strong></td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

---

**SCORES BY SEGMENT**

![Segment Scores Diagram]
**RECOMMENDATIONS**

Route 23 connects Parkland Station with MLK Station. A new signal that replaces the existing signal and accommodates protected left-turns and Transit Signal Priority is recommended at Bengal & Medical District Dr. TSP is also recommended at the Maple Ave & Medical District Dr, Wycliff Ave & Maple Ave and Wycliff Ave & Cedar Springs intersections. A permanent protected left turn is recommended at the Cedar Springs and Oak Lawn signal. Removing route deviations down to Lemmon Ave for City Place Station stop is recommended to improve efficiency, but adding a new bus stop on Haskell near US 75 would preserve walking access to the station.

There are no recommendations made for other segments of the route.

**TOOLBOX ICON DEFINITION**

- **BUS STOP LOCATIONS**
- **ROUTE DESIGN**
- **SIGNAL PHASE MODIFICATION**
- **TRANSIT SIGNAL PRIORITY**
- **STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE**
- **NEW SIGNAL**
Route 25 – Cockrell Hill North

TERMINI
Westmoreland Station
Downtown Irving/Heritage Crossing Station

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
1,235

ROUTE CONNECTIONS
Routes 9, 28, 57, 104, 108, 221, 223, 225, 226, 227, 229, 230, 231, South Irving & East Irving GoLink, West Dallas GoLink, Mountain Creek GoLink, Red Line

KEY DESTINATIONS
Dallas College Irving Center
Dallas College Mountain View Campus
Pinnacle Park
Cockrell Hill Transfer Location

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
## Route 25 - Cockrell Hill North

### Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### Scores by Segment

- **Low** (Green)
  - Downtown Irving/Heritage Crossing
  - Irving & Nursery
  - Bernal & Singleton Transfer Location
  - Chalk Hill & IH 30
  - Cockrell Hill Transfer Location
  - Westmore-Land Station

- **Medium** (Orange)
  - SB

- **High** (Red)
  - NB
RECOMMENDATIONS

Route 25 serves West Dallas with termini at Westmoreland Station and Downtown Irving/Heritage Crossing. Removing the deviation to Cockrell Hill Transfer Location would enhance the route’s efficiency, while adding a bus stop nearby would maintain walking access to the transfer station. A new signal for buses entering Westmoreland station on the western side of the facility from Cockrell Hill Transfer Station should also be considered. The roundabout at Cockrell Hill/Jefferson intersection should be replaced with a new traffic signal.

TOOLBOX ICON DEFINITION

STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE
Further north on Route 25, a northbound queue jump is recommended at Cockrell Hill Rd and the eastbound IH-30 ramp. Buses should be prohibited from stopping for an extended period on eastbound Singleton west of Lapsley when running early to avoid sight distance issue for automobiles on Lapsley. Additional changes should either provide Transit Signal Priority at the Singleton Blvd & Bernal Dr and Singleton Blvd & Chaulk Hill intersections OR realign the portion of the route on Singleton and Chaulk Hill to Loop 12 and I-30 to avoid freight rail-related delays on Chaulk Hill Rd.
RECOMMENDATIONS

At the northern end of the route, bus bulbs are recommended at the Irving Blvd and Nursery Rd intersection, the Downtown Irving/Heritage Crossing stop and on parts of E 2nd St that have right side parking (e.g., Britain, Falcon stops).

TOOLBOX ICON DEFINITION

**BUS BULB**

STOP CONSOLIDATION RECOMMENDED ALONG THE ENTIRE ROUTE
Route 27 – Ridgecrest

TERMINI
Park Lane Station
Stone Canyon & Steppington

FREQUENCY
15 min Peak
20 min Off-Peak

AVERAGE DAILY BOARDINGS
1,029

ROUTE CONNECTIONS
Routes 20, 402, North Dallas
GoLink, North Central Dallas
GoLink, Red Line, Orange Line

KEY DESTINATIONS
The Art Institute of Dallas
NorthPark Shopping Center
Texas Health Presbyterian Hospital Dallas

LEGEND
Average Daily Boardings
5 or fewer boardings
6 – 10 boardings
11 – 50 boardings
51 – 100 boardings
Over 100 boardings
## Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>LOW</td>
</tr>
<tr>
<td>Bus Volume</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average Ridership</td>
<td>HIGH</td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>HIGH</td>
</tr>
<tr>
<td>Safety</td>
<td>LOW</td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

### Scores by Segment

- **STONE CANYON & STEPPINGTON**
- **WALNUT HILL STATION**
- **RIDGECREST & PARK LANE**
- **PARK LANE STATION**

**SB**

**NB**
Route 27 serves Vickery Meadow with termini at Park Lane Rail Station and Stone Canyon & Steppington. A northbound queue jump should be considered at Shady Brook Ln and Park Ln in the existing right turn lane. Transit Signal Priority should be provided for northbound and southbound bus movements through the Ridgecrest/Fair Oaks intersection. The bus stop on Greenville Ave north of Pineland Dr should also be moved closer to the intersection to allow more time for buses to merge to make the left turn at Walnut Hill Ln. Throughout the corridor, bus stop relocation and consolidation is recommended. There are no recommendations made for other segments of this route.
**Route 28 – Singleton**

**TERMINI**
- Walton Walker & Singleton Convention Center Station

**AVERAGE DAILY BOARDINGS**
- 1,012

**ROUTE CONNECTIONS**
- Routes 57, 101, 106, 125, 219, 230, West Dallas GoLink, Red Line, Blue Line, Green Line, Orange Line

**KEY DESTINATIONS**
- Dealey Plaza
- JFK Memorial Plaza
- Civic Garden
- Pioneer Plaza
- Pegasus Plaza
- Trinity Grove
- Victory Park
- Kay Bailey Hutchison Convention Center
- West End Historic District

**LEGEND**
- Average Daily Boardings
  - 5 or fewer boardings
  - 6 – 10 boardings
  - 11 – 50 boardings
  - 51 – 100 boardings
  - Over 100 boardings

**FREQUENCY**
- 15 min Peak
- 20 min Midday
## Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### SCORES BY SEGMENT

![Route Map]

- **Low** indicated in green
- **Medium** indicated in orange
- **High** indicated in red

**Route 28 - Singleton**
**RECOMMENDATIONS**

Route 28 serves West and Downtown Dallas with termini at Walton Walker & Singleton and the Convention Center. A bus and right turn only lane should be considered at N. Walton Walker Blvd and Singleton Blvd. Transit Signal Priority should be considered at the Bernal/Singleton Transfer Location, Singleton & Vinson St and Weisenberger Dr, and Singleton & Esmalda St. Bus stop consolidation is also recommended on Singleton Blvd between Bernal Dr and Esmalda St. Transit vehicles should be prohibited from stopping for an extended period on eastbound Singleton Blvd west of Lapsley when running early to avoid sight distance issue for northbound Lapsley automobiles turning left.

**TOOLBOX ICON DEFINITION**

- **ROADWAY CHANNELIZATION**
- **TRANSIT SIGNAL PRIORITY**
- **STOP CONSOLIDATION**
RECOMMENDATIONS

Transit Signal Priority is also recommended on Singleton Blvd at Kingsbridge, Hampton, Vilbig Rd and Sylvan Ave intersections. Bus stop consolidation is recommended between Esmalda St and Hampton Rd and between Hampton Rd and Sylvan Ave.

TOOLBOX ICON DEFINITION

- **TRANSIT SIGNAL PRIORITY**
- **STOP CONSOLIDATION**
RECOMMENDATIONS

On the eastern end of the route, Transit Signal Priority should be considered on Singleton Blvd at Gulden Ln/Amonette St.

TOOLBOX ICON DEFINITION

TRANSIT SIGNAL PRIORITY
Route 30 - Lake June

TERMINI
Lake June Station
Elam & Cheyenne

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
434

ROUTE CONNECTIONS
Routes 115, 218, Rylie GoLink, Green Line

KEY DESTINATIONS
Pleasant Grove Branch Library
Dallas College Pleasant Grove Center
River Ranch at Texas Horse Park
Trinity River Audubon Center

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
## Route 30 - Lake June

### Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>LOW</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>LOW</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>LOW</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### Scores by Segment

[Diagram showing scores by segment]
RECOMMENDATIONS

Route 30 serves East Dallas with termini at Lake June Station and Elam & Cheyenne. Bus stop consolidation is recommended on Lake June Rd between Buckner Blvd and Lake June Station. Transit Signal Priority is also recommended at the intersections of Lake June Rd with Jim Miller Rd, Hillburn Dr, Conner Dr, Pleasant Dr, and Holcomb Rd.

TOOLBOX ICON DEFINITION

STOP CONSOLIDATION

TRANSIT SIGNAL PRIORITY
Transit Signal Priority is also recommended on Lake June Rd at St. Augustine Rd, along with turn radius improvements at Lake June Rd & Cheyenne Rd. Bus stop consolidation is recommended along Lake June Rd between Bucner Blvd and St. Augustine Rd and along Masters Dr between Lake June Rd and Elam Rd.
**Route 38 – Ledbetter**

**TERMINI**
- Joseph Hardin AAFES
- Northbound
- Buckner Station

**FREQUENCY**
- 15 min Peak
- 20 min Midday

**AVERAGE DAILY BOARDINGS**
2,657

**ROUTE CONNECTIONS**
- Routes 15, 41, 45, 47, 57, 101, 108, 114, 217
- Inland Port GoLink
- Inland Port Connect GoLink
- Blue Line, Green Line

**KEY DESTINATIONS**
- University of North Texas at Dallas
- Oak Cliff Community Center
- River Ranch at Texas Horse Park
- Trinity River Audubon Center

**LEGEND**
- Average Daily Boardings
  - 5 or fewer boardings
  - 6 – 10 boardings
  - 11 – 50 boardings
  - 51 – 100 boardings
  - Over 100 boardings
## Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

## SCORES BY SEGMENT

![Scores by Segment](#)
Route 38 - Ledbetter

**RECOMMENDATIONS**

Route 38 serves South Dallas with termini at Joseph Hardin AAFES and Buckner Station. Transit Signal Priority is recommended on Ledbetter Dr at Boulder Dr, the Westcliff Plaza entrance signal, Mark Trail Way/Rugged Dr, and Village Fair Pl. The westbound bus stop on Ledbetter Dr on Altoona Dr is partially in the merge lane, presenting a safety concern, and should be moved to location further east.

**TOOLBOX ICON DEFINITION**

- **Bus Stop Locations**
- **Transit Signal Priority**
**RECOMMENDATIONS**

Transit Signal Priority is also recommended at the I-35 service road entrances, University Hills Blvd, Singing Hills Dr, the Ledbetter Station bus exit on Lancaster Rd, Veterans Dr, Bonnie View Rd, and Wadsworth Dr intersections.

**TOOLBOX ICON DEFINITION**

**TRANSIT SIGNAL PRIORITY**
The bus stops on Ledbetter near Carbondale St should be removed due to safety concerns. Transit Signal Priority is recommended on Ledbetter Dr at Pemberton Hill and Jim Miller Rd. At Buckner Station, TSP is recommended at the Kipling Dr exit. A bus left turn signal should be placed at Elam Rd and Rowland Ave/Buckner Station.
**Route 41 - Bonnie View**

**TERMINI**
- Camp Wisdom Station
- Illinois Station

**FREQUENCY**
- 15 min Peak
- 20 min Midday

**AVERAGE DAILY BOARDINGS**
- 914

**ROUTE CONNECTIONS**
- Routes 38, 45, 104, 108, 114, 215, 217, 228, Inland Port GoLink, Inland Port Connect GoLink, Blue Line

**KEY DESTINATIONS**
- Dallas VA Medical Center
- Paul Quinn College
- University of North Texas at Dallas

**LEGEND**
- Average Daily Boardings
  - 5 or fewer boardings
  - 6 – 10 boardings
  - 11 – 50 boardings
  - 51 – 100 boardings
  - Over 100 boardings
# Route 41 - Bonnie View

## Performance Measures

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

## Scores by Segment

![Scores by Segment Diagram](image-url)
Route 41 serves South Dallas with termini at Camp Wisdom Station and Illinois Station. Transit Signal Priority is recommended at the Illinois Station exit at S. Corinth St, at Kiest Blvd & Sunnyvale St, and at Sunnyvale St & Overton Rd. Bus stop consolidation is recommended from Illinois Station to Overton Rd & Sunnyvale St.

**RECOMMENDATIONS**

**TOOLBOX ICON DEFINITION**

- **Transit Signal Priority**
- **Stop Consolidation**
RECOMMENDATIONS

A new signal with Transit Signal Priority should be considered at Bonnie View Rd & Highland Hills Dr and Patrol Way & Camp Wisdom Rd. On-street parking should be removed and bus stop consolidation implemented on Willhurt Ave between Sunnyvale St and Bonnie View Rd.

TOOLBOX ICON DESCRIPTION

- **Transit Signal Priority**
- **New Signal**
- **Parking Removal**
- **Stop Consolidation**
Route 45 – Marsalis

TERMINI
Camp Wisdom Station
East Transfer Center

AVERAGE DAILY BOARDINGS
859

FREQUENCY
15 min Peak
20 min Midday

ROUTE CONNECTIONS
Routes 9, 38, 41, 104, 108, 228, 215, 226, Inland Port GoLink, Inland Port Connect GoLink, Red Line

KEY DESTINATIONS
Methodist Dallas Medical Center
Dallas County Tax Office
University of North Texas at Dallas
Dallas Zoo

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>LOW</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

**SCORES BY SEGMENT**

![Segment Scores Chart]
RECOMMENDATIONS

Route 45 serves South Dallas into Downtown, with termini at Camp Wisdom Station and the CBD East Transfer Center. Transit Signal Priority on Marsalis Ave at Colorado Blvd, 7th St, 8th St and 12th St should also be considered.

TOOLBOX ICON DEFINITION

TRANSPORT SIGNAL PRIORITY
The route alignment to Ewing Ave and Dallas Zoo Station should be reconsidered to minimize deviation. Transit Signal Priority should be considered on Marsalis Ave at Saner Ave, Overton Rd, and Ann Arbor Ave. Bus stop consolidation also recommended along Marsalis between Winter St and Laureland Rd.
RECOMMENDATIONS

New signals are recommended at Marsalis Ave & Laureland Rd and Patrol Way & Camp Wisdom Rd. Transit Signal Priority may also be considered at Patrol Way & Camp Wisdom to improve efficiency at the beginning and end of the route. Bus stop relocation is also recommended for the stop at Marsalis Ave and Laureland Rd.

TOOLBOX ICON DEFINITION

- **STOP CONSOLIDATION**
- **TRANSIT SIGNAL PRIORITY**
- **NEW SIGNAL**
- **BUS STOP LOCATIONS**
Route 47 – Polk

TERMINI
Kirnwood & Wheatland
East Transfer Center

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
1,370

ROUTE CONNECTIONS

KEY DESTINATIONS
Methodist Dallas Medical Center
Dallas County Tax Office
University of North Texas at Dallas
Carpenter Park
Tyler/Vernon Station

LEGEND
Average Daily Boardings
- 5 or fewer boardings
- 6 – 10 boardings
- 11 – 50 boardings
- 51 – 100 boardings
- Over 100 boardings
## Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Delay</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td>Travel Time Variance</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>High score indicates high variability in travel times along the route</td>
<td></td>
</tr>
<tr>
<td>Bus Volume</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td>Average Ridership</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average daily stop-level boardings in each direction</td>
<td></td>
</tr>
<tr>
<td>Max Passenger Load</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Average maximum passenger load along the route</td>
<td></td>
</tr>
<tr>
<td>Existing Population and Employment</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of residents and jobs within 1/4 mile of the route</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td>Equity/Ridership Profile</td>
<td>HIGH</td>
</tr>
<tr>
<td>Route proximity to Justice40 Census tracts</td>
<td></td>
</tr>
</tbody>
</table>

### Scores by Segment

- **SB**: EAST TRANSFER CENTER to POLK & KIEST
- **NB**: WHEATLAND & LEIGH ANN to KIRNWOOD & WHEATLAND

- **LOW**
- **HIGH**
Route 47 - Polk

RECOMMENDATIONS
Route 47 serves South Dallas into Downtown with termini at Kirnwood & Wheatland and the East Transfer Center. Transit Signal Priority should be considered on 12th St at Bishop Ave, Llewellyn Ave, Tyler St, as well as at Tyler St & Clarendon Dr and Polk St & Saner Ave. Bus stop consolidation is also recommended on Polk St between 12th and Illinois. A pedestrian signal should be provided at Tyler St and Vernon Ave to accommodate bus riders alighting to board Red Line train.

TOOLBOX ICON DEFINITION

<table>
<thead>
<tr>
<th>Icon</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus with Signal</td>
<td>Transit Signal Priority</td>
</tr>
<tr>
<td>Dotted Line</td>
<td>Stop Consolidation</td>
</tr>
<tr>
<td>Traffic Light</td>
<td>New Signal</td>
</tr>
</tbody>
</table>
RECOMMENDATIONS

At the southern segment of the route, further Transit Signal Priority should be considered on Polk St at Saner Ave, Pentagon Pkwy, Reynoldston Ln, and Red Bird Ln. Bus stop consolidation is also needed on Racine Dr. On-street parking on Leigh Ann between Kirnwood and Wheatland should be prohibited on at least one side of the street.

TOOLBOX ICON DEFINITION

- **TRANSIT SIGNAL PRIORITY**
- **STOP CONSOLIDATION**
- **PARKING REMOVAL**
Route 57 – Westmoreland

TERMINI
Kirnwood & Wheatland
SWMD/Parkland Station

FREQUENCY
15 min Peak
20 min Midday

AVERAGE DAILY BOARDINGS
3,005

ROUTE CONNECTIONS

KEY DESTINATIONS
Dallas College West
Dallas Center
Executive Airport-RBD
Methodist Charlton Medical Center
Medical Center

LEGEND
Average Daily Boardings
○ 5 or fewer boardings
○ 6 – 10 boardings
○ 11 – 50 boardings
○ 51 – 100 boardings
○ Over 100 boardings
## Route 57 – Westmoreland

### Performance Measure

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Route Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transit Delay</strong></td>
<td>MEDIUM</td>
</tr>
<tr>
<td>Amount of delay buses experience compared to the posted speed limit</td>
<td></td>
</tr>
<tr>
<td><strong>Travel Time Variance</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td><strong>Bus Volume</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td>Average number of vehicles per hour on weekdays</td>
<td></td>
</tr>
<tr>
<td><strong>Average Ridership</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td><strong>Max Passenger Load</strong></td>
<td>VERY HIGH</td>
</tr>
<tr>
<td><strong>Existing Population and Employment</strong></td>
<td>HIGH</td>
</tr>
<tr>
<td><strong>Safety</strong></td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>Percentage of the route located within the Dallas High Injury Network</td>
<td></td>
</tr>
<tr>
<td><strong>Equity/Ridership Profile</strong></td>
<td>HIGH</td>
</tr>
</tbody>
</table>

### Scores by Segment

- **PARKLAND STATION**
- **HARRY HINES & MOCKINGBIRD**
- **MOCKINGBIRD & AMBASSADOR**
- **WESTMORELAND & SINGLETON**
- **WESTMORELAND & DAVIS**
- **WESTMORELAND STATION**
- **WESTMORELAND & BRONZE**
- **WESTMORELAND & CAMP WISDOM**
- **KIRNWOOD & WHEATLAND**
RECOMMENDATIONS

Route 57 serves South and Central Dallas with termini at Kirnwood & Wheatland and Parkland Station. Transit Signal Priority should be considered at Harry Hines and Lofland Blvd, Butler St, Record Crossing, and Mockingbird Ln, as well as at Mockingbird Ln and Oakbrook Dr, Elmwood Dr, Brookriver Dr, Halifax St, Canada Dr, and Bickers St.

TOOLBOX ICON DEFINITION

TRANSIT SIGNAL PRIORITY
RECOMMENDATIONS

A new signal at the western entrance/exit to Westmoreland Station with added Transit Signal Priority for exiting buses should be considered to improve reliability at the station. TSP should also be considered on Westmoreland Rd and Commerce St, Cyn Blf Blvd, Redmond Dr, Fort Worth Ave, Davis St, and Clarendon Dr. Stop consolidation should also be considered on Westmoreland Rd between Jefferson Blvd and Kiest Blvd.

TOOLBOX ICON DEFINITION

- **TRANSIT SIGNAL PRIORITY**
- **NEW SIGNAL**
- **STOP CONSOLIDATION**
At the southern segment of the route, bus stop consolidation should be considered on Westmoreland between Camp Wisdom Rd and Wheatland and on Wheatland between Westmoreland and Kirnwood Dr. Transit Signal Priority should be considered at Red Bird Ln, Wheatland & Bolton Boone Dr, Westmoreland at Gannon Ln, and at Investor Dr. A new signal at Kirnwood Dr and the IH-20 frontage road would also help speed up transit vehicles.